Skip to main content

Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

High-energy state quenching (qE) is the rapidly reversible component of non-photochemical quenching in chloroplasts. Recent experimental approaches indicate that establishment of the photoprotective qE state in green plant chloroplasts requires a large-scale re-organization of photosystem II and its light-harvesting antenna complexes (LHCII) within the grana membrane, with formation of spatially segregated domains of aggregated LHCII complexes. Consequently, qE formation requires mobility of chlorophyll-protein complexes within thylakoid membranes, and factors that control such mobility are major determinants of rapid qE formation. These factors include the complement of some minor light-harvesting proteins as well as the PsbS subunit of photosystem II. We review the evidence for this scenario, including studies of the organization of chlorophyll-protein complexes by freeze-fracture electron microscopy and studies of the mobility of chlorophyll-protein complexes by fluorescence recovery after photobleaching. Finally, we present an integrated working model for the structural events involved in qE formation, and the factors that trigger the transition. This model incorporates available evidence on the roles of proton binding to LHC complexes and to PsbS, and of xanthophyll cycle carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM –:

Atomic force microscopy;

B4C –:

Supercomplex of CP24, CP29 and trimeric LHCII-M;

C2S2M2 –:

Supercomplex containing dimeric PS II core 2 LHCII-S trimers and 2 LHCII-M trimers;

CP24 –:

Monomeric light-harvesting antenna complex encoded by the lhcb6 gene;

CP26 –:

Monomeric light-harvesting antenna complex encoded by the lhcb5 gene;

CP29 –:

Monomeric light-harvesting antenna complex encoded by the lhcb4 gene;

EFs –:

Exoplasmic (lumenal) fracture face from stacked thylakoid membrane region;

EFu –:

Exoplasmic (lumenal) fracture face from unstacked thylakoid membrane region;

FFEM –:

Freeze-fracture electron microscopy;

FRAP –:

Fluorescence recovery after photobleaching;

LHC –:

Light-harvesting complex;

Lhcb1 –:

Major LHCII protein encoded by the lhcb1 gene;

Lhcb2 –:

Major LHCII protein encoded by the lhcb2 gene;

LHCII –:

Light-harvesting chlorophyll a/b-binding protein of photosystem II;

LHCII-M –:

Moderately-bound LHCII trimer;

LHCII-S –:

Strongly-bound LHCII trimer;

LHCSR –:

Stress-related member of the LHC protein superfamily product of the LI818 transcript in Chlamydomonas reinhardtii;

NPQ –:

Non-photochemical quenching of chlorophyll fluorescence;

PFs –:

Protoplasmic (stromal) fracture face from stacked thylakoid membrane region;

PFu –:

Protoplasmic (stromal) fracture face from unstacked thylakoid membrane region;

PS II –:

Photosystem II;

PsbS –:

S subunit of photosystem II;

qE –:

High-energy state quenching as the rapidly reversible component of NPQ;

Stn7 –:

Chloroplast-located protein kinase encoded by the stn7 gene of Arabidopsis thaliana;

Stn8 –:

Chloroplast-located protein kinase encoded by the stn8 gene of Arabidopsis thaliana

References

  • Anderson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S (2003) Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II – effects on photosynthesis, grana stacking and fitness. Plant J 35:350–361

    Article  Google Scholar 

  • Ballotari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    Article  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295

    Article  CAS  Google Scholar 

  • Barber J, Mills J, Nicolson J (1974) Studies with cation specific ionophores show that within the intact chloroplast Mg2+ acts as the main exchange cation for H+ pumping. FEBS Lett 49:106–110

    Article  CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L, Funk C, Zarter CR, Adamska I, Jansson S, Adams WW III (2006) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol Plant 127:670–680

    Article  CAS  Google Scholar 

  • Drepper F, Carlberg I, Andersson B, Haehnel W (1993) Lateral diffusion of an integral membrane protein. Monte Carlo analysis of the migration of phosphorylated light-harvesting complex II in the thylakoid membrane. Biochemistry 32:11915–11922

    Article  CAS  PubMed  Google Scholar 

  • Garab G, Istokovics A, Butiuc A, Simidjiev I, Dér A (1998) Light-induced ion movements in thylakoid membranes and isolated LHC II. In: Garab G (ed) Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers, Dordrecht, pp 341–344

    Google Scholar 

  • Goral TK, Johnson MP, Brain APR, Kirchhoff H, Ruban AV, Mullineaux CW (2010) Visualizing the mobility and distribution of chlorophyll-proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J 62:948–959

    CAS  PubMed  Google Scholar 

  • Goral TK, Johnson MP, Duffy CDP, Brain APR, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Garab G (2001) Non-photochemical chlorophyll fluorescence quenching and structural rearrangements induced by low pH in intact cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Photosynth Res 27:185–197

    Article  Google Scholar 

  • Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J Biol Chem 285:17020–17028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herbstová M, Tietz S, Kinzel C, Turkina MV, Kirchhoff H (2012) Architectural switch in plant photosynthetic membranes induced by light stress. Proc Natl Acad Sci USA 109:20130–20135

    Article  PubMed Central  PubMed  Google Scholar 

  • Holm JK, Várkonyi Z, Kovács L, Posselt D, Garab G (2005) Thermo-optically induced re-organizations in the main light harvesting antenna of plants. Indications for the role of LHCII-only macrodomains in thylakoids. Photosynth Res 86:275–282

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal A, Noctor GD, Young A (1991) Control of the light-harvesting function of chloroplast membranes by the proton concentration in the thylakoid lumen: aggregation states of the LHCII complex and the role of zeaxanthin. FEBS Lett 292:1–4

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Ilioaia C, Johnson M, Horton P, Ruban AV (2008) Induction of efficient energy dissipation in the isolated light harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 283:29505–29512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll in LHCII. J Biol Chem 284:23592–23601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchhoff H, Mukherjee U, Galla HJ (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41:4872–4882

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Tremmel I, Haase W, Kubitscheck U (2004) Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry 43:9204–9213

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146:1571–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978

    Article  CAS  PubMed  Google Scholar 

  • Kouřil R, Oostergetel GT, Boekema EJ (2011) Fine structure of grana thylakoid membrane organization using cryo-electron tomography. Biochim Biophys Acta 1807:368–374

    Article  PubMed  Google Scholar 

  • Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs low-light: effect of light-acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    Article  PubMed  Google Scholar 

  • Kovacs L, Damkjær J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambrev PH, Tsonev T, Velikova V, Georgiyeva K, Lambreva MD, Yordanov I, Kovács L, Garab G (2007) Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. Photosynth Res 94:321–332

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Lokstein H, Tian L, Polle JEW, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered non-photochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553:309–319

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW (2008) Factors controlling the mobility of photosynthetic proteins. Photochem Photobiol 84:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW, Sarcina M (2002) Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching. Trends Plant Sci 7:237–240

    Article  CAS  PubMed  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light harvesting complexes. Biochim Biophys Acta 1102:30–38

    Article  CAS  Google Scholar 

  • Ruban AV, Rees D, Pascal AA, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. Relationships between LHCII aggregation in vitro and qE in isolated thylakoids. Biochim Biophys Acta 1102:39–44

    Article  CAS  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP (1997a) Characterisation of the aggregated state of the light harvesting complex of photosystem II by linear and circular dichroism spectroscopy. Biochim Biophys Acta 1321:61–70

    Article  CAS  Google Scholar 

  • Ruban AV, Phillip D, Young A, Horton P (1997b) Carotenoid-dependent oligomerisation of the major chlorophyll a/b light harvesting complex of photosystem II of plants. Biochemistry 36:7855–7859

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) Photoprotective molecular switch in photosystem II. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and non-photochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarter CR, Adams WW III, Ebbert V, Adamska I, Jansson S, Demmig-Adams B (2006) Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant Cell Environ 29:868–878

    Article  Google Scholar 

Download references

Acknowledgments

We thank the UK Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council (EPSRC), The Royal Society, The Leverhulme Trust and EU FP7 (Marie Curie ITN “HARVEST”) for financial support for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad W. Mullineaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruban, A.V., Mullineaux, C.W. (2014). Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_17

Download citation

Publish with us

Policies and ethics