Skip to main content

Fucoxanthin-Chlorophyll-Proteins and Non-Photochemical Fluorescence Quenching of Diatoms

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Diatoms possess membrane-intrinsic light-harvesting proteins, called fucoxanthin-chlorophyll-proteins (FCPs) that, based on their protein sequences, are related to higher plant light-harvesting complexes (LHCs). FCPs differ from LHCs in overall organization around the photosystems, and in that fucoxanthin and chlorophyll c (Chl c) serve as the diatoms’ accessory pigments in a high carotenoid-to-chlorophyll ratio. Most FCPs assemble into trimeric complexes, but higher oligomers of specific polypeptide composition were also found. Polypeptides fall into three different groups, namely Lhcf (Lhcs named after the main carotenoid fucoxanthin, the main light harvesters), Lhcr (photosystem I-associated polypeptides closely related to red algal intrinsic Lhc), and Lhcx proteins related to LhcSR proteins (stress related Lhcs) identified in the green alga Chlamydomonas reinhardtii as functional homologues to PsbS (photosystem II protein S). In the genomes of diatoms published so far, sequences for four to five different Lhcx proteins can be found. All of the latter proteins are expressed and most of them are up-regulated under high light. On the other hand, no homologue of psbS is present in diatoms. The Lhcx content was shown to correlate with the ability for non-photochemical quenching (NPQ) of chlorophyll fluorescence (as a measure of thermal dissipation of singlet-excited chlorophyll) in pennate diatoms, e.g., Phaeodactylum tricornutum, as well as in centric diatoms, e.g., Thalassiosira pseudonana. Localization of Lhcx and the supra-molecular organization of FCP complexes, however, appear to differ between the latter two diatom groups. For several centric species, occurrence of Lhcx proteins within trimeric FCP complexes was shown, whereas no Lhcx proteins have been identified in FCP trimers from pennate species thus far. In centric diatoms, the content of Lhcx proteins in trimeric FCP complexes, furthermore, correlates with the level of diatoxanthin, a carotenoid of the xanthophyll cycle of diatoms synthesized under high light. Diatoxanthin content was inversely correlated with the fluorescence yield of trimeric FCP complexes, i.e., higher diatoxanthin levels were associated with a more highly quenched state. Another factor which influences NPQ in vivo is a low lumenal pH. Low pH values were also shown to exert effects on the fluorescence yield of isolated trimeric FCPs. Likewise, aggregation of FCP complexes in vitro affected their fluorescence yield as proposed for the case in vivo. A model for the involvement of FCPs in NPQ is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Car:

Carotenoid

Chl:

Chlorophyll

Dd:

Diadinoxanthin

Dt:

Diatoxanthin

FCP:

Fucoxanthin-chlorophyll-protein

Fx:

Fucoxanthin

HL:

High light

LHC:

Light-harvesting complex

Lhcf:

Main light harvesting proteins of diatoms, named according to their fucoxanthin content

LHCII:

Light harvesting complex II

Lhcr:

Photosystem I related Lhcs of diatoms most closely related to red algae intrinsic Lhcs

LhcSR:

Stress related Lhc first found in green algae

Lhcx:

Lhcs of diatoms working in light protection

LL:

Low light

NPQ:

Non-photochemical quenching of chlorophyll fluorescence (as a measure of thermal dissipation of the singlet-excited state of chlorophyll a)

PS:

Photosystem

PsbS:

Photosystem II protein S

Q1:

Hypothetical quenching site being due to aggregation of pigment-protein complexes

Q2:

Hypothetical quenching site depending on xanthophyll cycle pigments

qE:

Part of NPQ related to the energization of the thylakoid membrane (rapidly reversible pH-dependent NPQ)

qI:

Part of NPQ related to photoinhibition (slowly reversible, pH-independent NPQ)

References

  • Alberte RS, Friedman AL, Gustafson DL, Rudnick MS, Lyman H (1981) Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Biochim Biophys Acta 635:304–316

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Schnitzler Parker M, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bailleul B, Rogato A, De Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107:18214–18219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053

    Article  CAS  PubMed  Google Scholar 

  • Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9:e1000577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq M, Napoli C, Obornik M, Parker MS, Petit J, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  Google Scholar 

  • Büchel C, Wilhelm C (1990) Wavelength independent state transitions and light regulated chlororespiration as mechanisms to control the energy status in the chloroplast of Pleurochloris meiringensis. Plant Physiol Biochem 28:307–317

    Google Scholar 

  • Chukhutsina VU, Büchel C, van Amerongen H (2013) Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Biochim Biophys Acta 1827:10–18

    Article  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound versus free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593

    Article  PubMed  Google Scholar 

  • Di Valentin M, Büchel C, Giacometti GM, Carbonera D (2012) Chlorophyll triplet quenching by fucoxanthin in the fucoxanthin-chlorophyll protein from the diatom Cyclotella meneghiniana. Biochem Biophys Res Commun 427:637–641

    Article  PubMed  Google Scholar 

  • Durnford DG, Aebersold R, Green BR (1996) The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light-harvesting antennae. Mol Gen Genet 253:377–386

    Article  CAS  PubMed  Google Scholar 

  • Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260:335–345

    Article  CAS  PubMed  Google Scholar 

  • Eppard M, Rhiel E (2000) Investigation on gene copy number, introns and chromosomal arrangements of genes encoding the fucoxanthin chlorophyll a/c-binding proteins of the centric diatom Cyclotella cryptica. Protist 151:27–39

    Article  CAS  PubMed  Google Scholar 

  • Falciatore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53:109–130

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1996) The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae. Biochim Biophys Acta 1277:243–252

    Article  CAS  PubMed  Google Scholar 

  • Friedman AL, Alberte RS (1984) A diatom light-harvesting pigment-protein complex. Plant Physiol 76:483–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman AL, Alberte RS (1986) Biogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms. Plant Physiol 80:43–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Ohki K (2004) On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant Cell Physiol 45:392–397

    Article  CAS  PubMed  Google Scholar 

  • Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010a) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins. Biochim Biophys Acta 1797:543–549

    Article  CAS  PubMed  Google Scholar 

  • Gildenhoff N, Herz J, Gundermann K, Büchel C, Wachtveitl J (2010b) The excitation energy transfer in the trimeric fucoxanthin-chlorophyll protein from Cyclotella meneghiniana analyzed by polarized transient absorption spectroscopy. Chem Phys 373:104–109

    Article  CAS  Google Scholar 

  • Goss R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and Δ-pH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2008) A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant Cell Physiol 49:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Rokka A, Aro E (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Lavaud J, Rousseau B, Etienne A, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272:4339–4348

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2012) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1827:303–310

    Article  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (1999) Activation of diadinxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82

    Article  CAS  Google Scholar 

  • Juhas M, Büchel C (2012) Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. J Exp Bot 63:3673–3681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN (1991) Three-dimensional structure of plant light-harvesting complex by electron crystallography. Nature 350:130–134

    Article  PubMed  Google Scholar 

  • Lavaud J, Kroth PG (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiol 47:1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, van Gorkom HJ, Etienne A (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42:5802–5808

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Article  Google Scholar 

  • Lepetit B, Volke D, Szabó M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J (2013) High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Medlin LK, Kooistra WH, Gersonde R, Wellbrock U (1996) Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol Biol Evol 13:67–75

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chem Phys Chem 11:1289–1296

    PubMed  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Posselt D, Kovács L, Holm JK, Szabó M, Ughy B, Rosta L, Peters J, Timmins P, Garab G (2011) Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem J 436:225–230

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Szabó M, Ünnep R, Káli G, Miloslavina Y, Lambrev PH, Zsiros O, Porcar L, Timmins P, Rosta L, Garab G (2012) Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynth Res 111:71–79

    Article  CAS  PubMed  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge PW, Andresen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4:e7743

    Article  PubMed Central  PubMed  Google Scholar 

  • Nymark M, Valle KC, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM, Brembu T, Subramanyam R (2013) Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 8:e58722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oeltjen A, Krumbein WE, Rhiel E (2002) Investigations on transcript sizes, steady state mRNA concentrations and diurnal expression of genes encoding fucoxanthin chlorophyll a/c light harvesting polypeptides in the centric diatom Cyclotella cryptica. Plant Biol 4:250–257

    Article  CAS  Google Scholar 

  • Oeltjen A, Marquardt J, Rhiel E (2004) Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. Int Microbiol 7:127–131

    CAS  PubMed  Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum – II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owens TG, Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum – I. Isolation and characterization of pigment-protein complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papagiannakis E, van Stokkum IHM, Fey H, Büchel C (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth Res 86:241–250

    Article  CAS  PubMed  Google Scholar 

  • Park S, Jung G, Hwang Y, Jin ES (2010) Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. Planta 231:349–360

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Sandberg DJ, Fey H, Birge RR, Büchel C, van Grondelle R (2008) The charge-transfer properties of the S2 state of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c2 protein (FCP) based on Stark spectroscopy and molecular orbital theory. J Phys Chem B 112:11838–11853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c 2 proteins from resonance Raman spectroscopy. J Phys Chem B 113:12565–12574

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c 2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Ouellet H, Guertin M (2000) Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 42:303–316

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–579

    Article  CAS  PubMed  Google Scholar 

  • Schumann A, Goss R, Jakob T, Wilhelm C (2007) Investigation of the quenching efficiency of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different pool sizes of xanthophyll cycle pigments. Phycologia 46:113–117

    Article  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stransky H, Hager A (1970) The carotenoid pattern and the occurrence of the light induced xanthophyll cycle in various classes of algae. Arch Microbiol 71:164–190

    CAS  Google Scholar 

  • Szabó M, Premvardhan L, Lepetit B, Goss R, Wilhelm C, Garab G (2010) Functional heterogeneity of the fucoxanthins and fucoxanthin-chlorophyll proteins in diatom cells revealed by their electrochromic response and fluorescence and linear dichroism spectra. Chem Phys 373:110–114

    Article  Google Scholar 

  • Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767:1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Veith T, Brauns J, Weisheit W, Mittag M, Büchel C (2009) Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim Biophys Acta 1787:905–912

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M, Ghazaryan A, Cingil HE, Ara AM, Büchel C, van Grondelle R, Berera R (2014) Stark fluorescence spectroscopy reveals two emitting sites in the dissipative state of FCP antennas. Biochim Biophys Acta 1837(1):193–200

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797:1449–1457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (Bu812/4-1, Bu812/4-2) and the European Union (Marie Curie ITN 238017 ‘Harvest’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Büchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Büchel, C. (2014). Fucoxanthin-Chlorophyll-Proteins and Non-Photochemical Fluorescence Quenching of Diatoms. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_11

Download citation

Publish with us

Policies and ethics