Skip to main content

New Developments in Identification and Quantification of Airborne Inoculum

  • Chapter
  • First Online:

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 5))

Abstract

Airborne spores initiate many fungal diseases of crops but can occur with a patchy spatial distribution or with a variable seasonal timing. New diagnostic methods are available for use on spores sampled in air to give a rapid and on-site warning of inoculum presence or to monitor changes in genetic traits of pathogen populations, such as the race structure or frequency of fungicide-resistance. Increasingly, diagnostic methods used on-site or even integrated with air sampling equipment are being developed. These include fluorescence and image analysis methods, DNA-based methods such as qPCR, isothermal DNA amplification (LAMP and recombinase polymerase amplification), antibody-based methods (fluorescence microscopy and resonance imaging, ELISA, lateral flow devices, and biosensors such as holographic or SRi sensors) and biomarker-based methods (such as detection of volatile or particulate toxins or other metabolites by electrochemical biosensor). By allowing a rapid detection, these methods can offer a direct warning of the presence of inoculum to direct disease control decisions. Air samplers are often used within crops, just above the crop canopy, or on aircraft (including UAVs) or on tall buildings. Their location affects the threshold of spore concentrations that translates to disease risk. The optimal deployment of air samplers varies according to how widespread the pathogen is, the type of air sampler used (particularly the rate of airflow sampled for volumetric devices) and the importance or value of the crop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boonham N (2013) Q-DETECT – developing pest and pathogen detection methods for national plant protection organizations. Acta Phytopathol Sinica 43(Suppl): 278 [International Congress of Plant Pathology 2013 abstract] O22.003

    Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  PubMed  CAS  Google Scholar 

  • Candresse T, Lot H, German-Retana S, Krause-Sakate R, Thomas J, Souche S, Delaunay T, Lanneau M, Le Gall O (2007) Analysis of the serological variability of Lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology. J Gen Virol 88:2605–2610

    Article  PubMed  CAS  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of microplate method of enzyme-linked immunosorbent assay for the detection of plant-viruses. J Gen Virol 34:475–483

    Article  PubMed  CAS  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29

    Article  PubMed  CAS  Google Scholar 

  • Cox CS, Wathes CM (eds) (1995) Bioaerosols handbook. CRC Press, Boca Raton, pp 623

    Google Scholar 

  • Day JP, Kell DB, Griffith GW (2002) Differentiation of Phytophthora infestans sporangia from other airborne biological particles by flow cytometry. Appl Environ Microbiol 68:37–45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fraaije BA, Cools HJ, Fountaine J, Lovell DJ, Motteram J, West JS, Lucas JA (2005) QoI resistant isolates of Mycosphaerella graminicola and the role of ascospores in further spread of resistant alleles in field populations. Phytopathology 95:933–941

    Article  PubMed  CAS  Google Scholar 

  • Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–122

    PubMed  CAS  Google Scholar 

  • Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106:12814–12819

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehring AG, Crawford CG, Mazenko RS, VanHouten LJ, Brewster JD (1996) Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium. J Immunol Methods 195:15–25

    Article  PubMed  CAS  Google Scholar 

  • Gottwald TR, Graham JH, Egel DS (1992) Analysis of foci of Asiatic citrus canker in a Florida citrus orchard. Plant Dis 76:389–396

    Article  Google Scholar 

  • Gottwald TR, Hughes G, Graham JH, Sun X, Riley T (2001) The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30–34

    Article  PubMed  CAS  Google Scholar 

  • Gregory PH (1952) Spore content of the atmosphere near the ground. Nature 170:475

    Article  PubMed  CAS  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Leonard Hill, Aylesbury, pp 377

    Google Scholar 

  • Hopkins AJM, Castanyo C, Boberg JB, Stenlid J (2013) Methods for the early detection of new invasive forest pathogens. Acta Phytopathol Sinica 43(Suppl):85 [International Congress of Plant Pathology 2013 abstract] O04.016

    Google Scholar 

  • Jackson SL, Bayliss KL (2011) Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathol 60:801–810

    Article  Google Scholar 

  • Kennedy R, Wakeham AJ, Byrne KG, Meyer UM, Dewey FM (2000) A new method to monitor airborne inoculum of the fungal plant pathogens Mycosphaerella brassicicola and Botrytis cinerea. Appl Environ Microbiol 66:2996–3003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lacey ME, West JS (2006) The Air Spora. Springer, Dordrecht, The Netherlands, pp 156

    Book  Google Scholar 

  • Lamberski JA, Thompson NE, Burgess RR (2006) Expression and purification of a single-chain variable fragment antibody derived from a polyol-responsive monoclonal antibody. Protein Expr Purif 47(1):82–92

    Article  PubMed  CAS  Google Scholar 

  • Li X, Nie J, Arsenault H, Xu H, De Boer SH (2013) On-the-spot diagnosis and detection of plant pathogens. Acta Phytopathol Sinica 43(Suppl): 84 [International Congress of Plant Pathology 2013 abstract] O04.014

    Google Scholar 

  • Mahaffee W, Keune J, Thiessen L, Grove G (2013) Bringing nucleic acid based detection of pathogens to the masses: the use of isothermic amplification approaches by practitioners. Acta Phytopathol Sinica 43(Suppl): 278 [International Congress of Plant Pathology 2013 abstract] O22.002

    Google Scholar 

  • McCartney HA, Fitt BDL, West JS (2006) Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns. In: Cooke BM, Jones DG, Kaye B (eds) The epidemiology of plant diseases, 2nd edn. Springer, Dordrecht, pp 159–192

    Google Scholar 

  • McDevitt JJ, Lees PSJ, Merz WG, Schwab KJ (2007) Inhibition of quantitative PCR analysis of fungal conidia associated with indoor air particulate matter. Aerobiologia 23:35–45

    Article  Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) Novel understanding of the water cycle as a link between unsuspected habitats of airborne pathogens – what consequences for plant disease management? Acta Phytopathol Sinica 43(Suppl):17 [International Congress of Plant Pathology 2013 abstract] O01.004

    Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003) Fabrication of a disposable biosensor for Escherichia coli O157: H7 detection. IEEE Sens J 3(4):345–351

    Article  CAS  Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2004) A disposable biosensor for pathogen detection in fresh produce samples. Biosyst Eng 88(2):145–151

    Article  Google Scholar 

  • Nierman WC, Pain A et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438(7071):1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nugaeva N, Gfeller KY et al (2007) An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc Microanal 13(1):13–17

    Article  PubMed  CAS  Google Scholar 

  • Olmos A, Bertolini E, Martínez MC, Candresse T, Glasa M, Pina JA, Cambra M (2013) Deep sequencing: a powerful tool for detection and characterization of known and new plant viruses and viroids. Acta Phytopathol Sinica 43(Suppl): 280 [International Congress of Plant Pathology 2013 abstract] O22.010

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pady SM, Kapica L (1955) Fungi in air over the Atlantic Ocean. Mycologia 47:34–50

    Article  Google Scholar 

  • Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ 40:3941–3961

    Article  CAS  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:1115–1121

    Article  CAS  Google Scholar 

  • Rodoni B, Mann R, Smith G, Chapman T, Bellgard M, Stack J (2013) Genomics-based detection of bacterial plant pathogens; Implications for quarantine and trade policy. Acta Phytopathol Sinica 43(Suppl):82 [International Congress of Plant Pathology 2013 abstract] O04.008

    Google Scholar 

  • Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70(7):3795–3806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skottrup P, Nicolaisen M, Justesen AF (2007) Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J Microbiol Methods 68(3):507–515

    Article  PubMed  CAS  Google Scholar 

  • Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24(3):339–348

    Article  PubMed  CAS  Google Scholar 

  • Stanley WR, Kaye PH, Foot VE, Barrington SJ, Gallagher M, Gabey A (2011) Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer. Atmos Sci Lett 12:195–199

    Article  Google Scholar 

  • Torrance L, Ziegler A, Pittman H, Paterson M, Toth R, Eggleston I (2006) Oriented immobilisation of engineered single-chain antibodies to develop biosensors for virus detection. J Virol Methods 134(1–2):164–170

    Article  PubMed  CAS  Google Scholar 

  • Turner APF (2000) Biochemistry – biosensors sense and sensitivity. Science 290(5495):1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    Article  PubMed  CAS  Google Scholar 

  • Van de Wouw AP, Stonard JF, Howlett B, West JS, Fitt BDL, Atkins SD (2010) Determining frequencies of avirulent alleles in airborne Leptosphaeria maculans inoculum using quantitative PCR. Plant Pathol 59:809–818

    Article  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254

    Article  PubMed  CAS  Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, McCartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145(1):1–16

    Article  CAS  Google Scholar 

  • West JS, Atkins SD, Emberlin J, Fitt BDL (2008) PCR to predict risk of airborne disease. Trends Microbiol 16:380–387

    Article  PubMed  CAS  Google Scholar 

  • Williams RH, Ward E, McCartney HA (2001) Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl Environ Microbiol 67:2453–2459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang LJ, Ruan CM, Li YB (2001) Rapid detection of Salmonella typhimurium in food samples using a bienzyme electrochemical biosensor with flow injection. J Rapid Methods Automat Microbiol 9(4):229–240

    Article  CAS  Google Scholar 

  • Yang DK, Kweon CH, Kim BH, Lim S-I, Kim S-H, Kwon J-H, Han H-R (2004) TaqMan reverse transcription polymerase chain reaction for the detection of Japanese encephalitis virus. J Vet Sci 5(4):345–351

    PubMed  Google Scholar 

  • Zezza F, Pascale M, Mule G, Visconti A (2006) Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J Microbiol Methods 66(3):529–537

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the following funders: Technology Strategy Board (UK), Syngenta and the SYield consortium (http://www.syield.net/home.html), the BBSRC (UK), the HGCA, Defra and the European Union Seventh Framework Programme (FP7/2007–2013) under the grant agreement 265865 (PURE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heard, S., West, J.S. (2014). New Developments in Identification and Quantification of Airborne Inoculum. In: Gullino, M., Bonants, P. (eds) Detection and Diagnostics of Plant Pathogens. Plant Pathology in the 21st Century, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9020-8_1

Download citation

Publish with us

Policies and ethics