Skip to main content

Abstract

Adaptation is a concept central to evolutionary biology that explains why organisms fit their environment according to natural selection. An adaptation can be defined as a novel character appearing in an organism and maintained by natural selection. This concept must therefore be studied at two different levels, within a phylogenetic analysis for inferring relative novelty and within a populational analysis to assess the role of natural selection. By addition of these two study levels, ad hoc or tautological proposals of adaptive characters may be avoided. The related concepts of preadaptation or exaptation feature the importance of considering both a structure and its function to better understand the evolution of a character. The structure can remain stable and the function can change, subsequently contributing to an evolutionary innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Antonovics (1987), Coddington (1988), Brooks and McLennan (1991), Leroi et al. (1994), Grandcolas and D’Haese (2003).

  2. 2.

    For example, Sober (1984), Rose and Lauder (1996), Mahner and Bunge (1997).

  3. 3.

    See Hennig (1965, 1966), Wiley (1981), Farris (1983).

  4. 4.

    See Coddington (1988), Grandcolas et al. (1994), Deleporte (2002), Grandcolas and D’Haese (2003).

  5. 5.

    A clade is a group of taxa including a common ancestor and all its descendants. This is a monophyletic group.

  6. 6.

    Process of genetic drift, when variation in frequencies and fixation of alleles are made by random walk.

  7. 7.

    They are effects of the organisms’ structure in a developmental perspective (such as, amongst others, the Bauplan, or organisation levels, inherited from a deep ancestor, for example the organisational level of “vertebrates”).

  8. 8.

    Processes by which a phenotype initially produced in response to an environmental stimulus is finally expressed genetically, independently of the stimulus action.

  9. 9.

    Variation of a trait caused by environmental changes.

  10. 10.

    A grade is a paraphyletic group (i.e. including an ancestor and some of its descendants only), an invalid group in evolutionary biology and phylogenetic systematics. This kind of group is built on the basis of a misleading assumption of evolutionary progress, together including taxa supposedly primitive and evolved with regard to characters on which a focus is put.

  11. 11.

    Ability of a given phenotype to reproduce and transmit its genes, in given conditions.

  12. 12.

    Sister-groups are closer relatives to each other and they constitute an entire monophyletic group.

  13. 13.

    Cut of the petiole owing to a particular structure in the tissue, allowing the fall of leaves.

  14. 14.

    Ancestral trait or character, not modified.

  15. 15.

    Trees whose leaves do not fall together seasonally.

  16. 16.

    Transfer of genetic material by other means that specific reproduction mechanisms and by capture of genetic material present in the environment (possibly interspecific); to be distinguished from vertical transfers (sexual reproduction, pathenogenesis, scissiparity).

  17. 17.

    Wanntorp (1983), Coddington (1988), Carpenter (1989), Grandcolas et al. (1994).

  18. 18.

    Adaptive convergence means that unrelated species present adaptations functionally similar but that appeared independently during evolution (for example, the wings in bats and in birds). See Clutton-Brock and Harvey (1979), Felsenstein (1985), Harvey and Pagel (1991).

  19. 19.

    It is said from the appearance of animals advertising a potential predator that it is dangerous to eat them (e.g., toxicity).

References

  • Andrews, P. W., Gangestad, S. W., & Matthews, D. (2002). Adaptationism – How to carry out an exaptationist program. Behavioral and Brain Sciences, 25, 489–553.

    PubMed  Google Scholar 

  • Antonovics, J. (1987). The evolutionary dis-synthesis: Which bottles for which wine? American Naturalist, 129, 321–331.

    Article  Google Scholar 

  • Antonovics, J., & van Tienderen, P. H. (1991). Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology & Evolution, 6, 166–168.

    Article  CAS  Google Scholar 

  • Arnold, E. N. (1994). Investigating the origins of performance advantage: Adaptation, exaptation and lineage effects. In P. Eggleton & R. I. Vane-Wright (Eds.), Phylogenetics and ecology (Linnean Society symposium series, no 17, pp. 123–168). London: Academic.

    Google Scholar 

  • Barrett, P. H. (1960). A transcription of Darwin’s first notebook on ‘transmutation of species’. Bulletin of the Museum of Comparative Zoology, 122, 245–296.

    Google Scholar 

  • Baum, D. A., & Larson, A. (1991). Adaptation reviewed: A phylogenetic methodology for studying character macroevolution. Systematic Zoology, 40, 1–18.

    Article  Google Scholar 

  • Botha, R. P. (2002). Are these features of language that arose like birds’ feathers. Language & Communication, 22, 17–35.

    Article  Google Scholar 

  • Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior: A research program in comparative biology. Chicago: The University of Chicago Press.

    Google Scholar 

  • Carpenter, J. M. (1989). Testing scenarios: Wasp social behavior. Cladistics, 5, 131–144.

    Article  Google Scholar 

  • Clutton-Brock, T. H., & Harvey, P. H. (1979). Comparison and adaptation. Proceedings of the Royal Society of London, B, 205, 547–565.

    Article  CAS  Google Scholar 

  • Coddington, J. A. (1988). Cladistic tests of adaptational hypotheses. Cladistics, 4, 3–22.

    Article  Google Scholar 

  • Coddington, J. A. (1994). The roles of homology and convergence in studies of adaptation. In P. Eggleton & R. Vane-Wright (Eds.), Phylogenetics and ecology (Linnean Society symposium series, no 17, pp. 53–78). London: Academic.

    Google Scholar 

  • Coddington, J. A., Hormiga, G., & Scharff, N. (1997). Giant female or dwarf male spiders? Nature, 385, 687–688.

    Article  CAS  Google Scholar 

  • Crespi, B. J. (2000). The evolution of maladaptation. Heredity, 84, 623–629.

    Article  PubMed  Google Scholar 

  • Cuénot, L. (1909). Le peuplement des places vides dans la nature et l’origine des adaptations. Revue générale des sciences, 20, 8–14.

    Google Scholar 

  • Cuénot, L. (1914). Théorie de la préadaptation. Scientia, 16, 60–73.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Davenport, C. B. (1903). The animal ecology of the Cold Spring sand spit, with remarks on the theory of adaptation (10, pp. 157–176). Chicago: The Decennial Publications, University of Chicago.

    Google Scholar 

  • Deleporte, P. (2002). Phylogenetics and the aptationist program. Behavioral and Brain Sciences, 25, 514–515.

    Article  Google Scholar 

  • Delius, J. D., & Siemann, M. (1998). Transitive responding in animals and humans: Exaptation rather than adaptation? Behavioural Processes, 42, 103–137.

    Article  Google Scholar 

  • Dennett, D. C. (1998). Preston on exaptation: Herons, apples, and eggs. Journal of Philosophy, 95, 576–580.

    Article  Google Scholar 

  • Dohrn, A. (1875). Der Ursprung der Wirbelthiere und das Princip des Functionswechsels: genealogische Skizzen. Leipzig: W. Engelmann.

    Google Scholar 

  • Endler, J. A. (1986). Natural selection in the wild. Princeton: Princeton University Press.

    Google Scholar 

  • Farris, J. S. (1983). The logical basis of phylogenetic analysis. In N. Platnick & V. A. Funk (Eds.), Advances in cladistics: Proceedings of the second meeting of the Willi Hennig Society (Vol. 2, pp. 7–36). New York: Columbia University Press.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Fisher, R. A., & Stock, C. S. (1915). Cuénot on preadaptation: a criticism. Eugenics Review, 7, 46–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Futuyma, D. J. (1998). Evolutionary biology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Gould, S. J. (1991). Exaptation: a crucial tool for evolutionary psychology. Journal of Social Issues, 47, 43–65.

    Article  Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205, 581–598.

    Article  CAS  Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8, 4–15.

    Google Scholar 

  • Grandcolas, P., & D’Haese, C. (2003). Testing adaptation with phylogeny: How to account for phylogenetic pattern and selective value together? Zoologica Scripta, 32, 483–490.

    Article  Google Scholar 

  • Grandcolas, P., Deleporte, P., & Desutter-Grandcolas, L. (1994). Why to use phylogeny in evolutionary ecology? Acta Oecologica, 15, 661–673.

    Google Scholar 

  • Grandcolas, P., Deleporte, P., & Desutter-Grandcolas, L. (1997). Testing evolutionary processes with phylogenetic patterns: Test power and test limitations. In P. Grandcolas (Ed.), The origin of biodiversity in insects: Phylogenetic tests of evolutionary scenarios (Mémoires du Muséum national d’Histoire naturelle 173, pp. 53–71). Paris: Éditions du Muséum.

    Google Scholar 

  • Griffiths, P. E. (1992). Adaptive explanation and the concept of a vestige. In P. E. Griffiths (Ed.), Trees of life: Essays in philosophy of biology (pp. 111–131). Kluwer: Dordrecht.

    Chapter  Google Scholar 

  • Griffiths, P. E. (1993). Functional analysis and proper functions. British Journal for the Philosophy of Science, 44, 409–422.

    Article  Google Scholar 

  • Guyer, C., & Slowinski, J. B. (1995). Reply to Cunningham. Evolution, 49, 1294–1295.

    Article  Google Scholar 

  • Hall, B. K. (1999). Evolutionary developmental biology. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116.

    Article  Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  • Krimbas, C. B. (1984). On adaptation, neo-Darwinian tautology, and population fitness. Evolutionary Biology, 17, 1–57.

    Article  Google Scholar 

  • Leroi, A. M., Rose, M. R., & Lauder, G. V. (1994). What does the comparative method reveal about adaptation? American Naturalist, 143, 381–402.

    Article  Google Scholar 

  • Lewontin, R. C. (1969). The bases of conflict in biological explanation. Journal of the History of Biology, 2, 35–45.

    Article  Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Scientific American, 239, 212–230.

    Article  CAS  PubMed  Google Scholar 

  • Mahner, M., & Bunge, M. (1997). Foundations of biophilosophy. Berlin: Springer.

    Book  Google Scholar 

  • Mathews, H. (1958). Darwin, Wallace, and “pre-adaptation”. Journal of the Linnean Society of London, Zoology, 44, 93–98.

    Article  Google Scholar 

  • Morgan, T. H. (1909). For Darwin. Popular Science Monthly, 74, 367–380.

    Google Scholar 

  • Müller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.

    Article  Google Scholar 

  • O’Hara, R. J. (1992). Telling the tree: Narrative representation and the study of evolutionary history. Biology and Philosophy, 7, 135–160.

    Article  Google Scholar 

  • Otto, C., & Nilsson, L. M. (1981). Why do beech and oak trees retain leaves until spring? Oikos, 37, 387–390.

    Article  CAS  Google Scholar 

  • Pagel, M. D. (1994). The adaptationist wager. In P. Eggleton & R. I. Vane-Wright (Eds.), Phylogenetics and ecology (Linnean Society symposium series. Number 17, pp. 29–51). London: Academic.

    Google Scholar 

  • Perrier, E. (1886). La philosophie zoologique avant Darwin. Paris: Félix Alcan.

    Google Scholar 

  • Pigliucci, M., & Kaplan, J. (2000). The fall and rise of Dr Pangloss: Adaptationism and the Spandrels paper 20 years later. Trends in Ecology and Evolution, 15, 66–70.

    Article  PubMed  Google Scholar 

  • Reeve, H. K., & Sherman, P. W. (1993). Adaptation and the goals of evolutionary research. Quarterly Review of Biology, 68, 1–32.

    Article  Google Scholar 

  • Rose, M. R., & Lauder, G. V. (1996). Adaptation. New York: Academic.

    Google Scholar 

  • Sillén-Tullberg, B. (1988). Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution, 42, 293–305.

    Article  Google Scholar 

  • Sober, E. (1984). The nature of selection. Evolutionary theory in philosophical focus. Cambridge: MIT Press.

    Google Scholar 

  • Thornhill, R. (1990). The study of adaptation. In M. Bekoff & D. Jamieson (Eds.), Interpretation and explanation in the study of animal behavior (pp. 31–62). Boulder: Westview Press.

    Google Scholar 

  • Tort, P. (1997). Phylogénie du faillible. Notes introductives à la théorie de l’instinct chez Darwin (à propos de l’essai posthume sur l’instinct). In P. Tort (dir.), Pour Darwin (pp. 229–244). Paris: PUF.

    Google Scholar 

  • Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118–126.

    Article  Google Scholar 

  • Wanntorp, H. E. (1983). Historical constraints in adaptation theory: Traits and non-traits. Oikos, 41, 157–160.

    Article  Google Scholar 

  • Wenzel, J. W., & Carpenter, J. (1994). Comparing methods: Adaptive traits and tests of adaptation. In P. Eggleton & R. I. Vane-Wright (Eds.), Phylogenetics and ecology (Linnean Society symposium series, no 17, pp. 79–101). London: Academic.

    Google Scholar 

  • Wiley, E. O. (1981). Phylogenetics. The theory and practice of phylogenetic systematics. New York: Wiley-Liss.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Grandcolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grandcolas, P. (2015). Adaptation. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_5

Download citation

Publish with us

Policies and ethics