Skip to main content

On the Propagation of Consistency in Some Systems of Paraconsistent Logic

  • Chapter
  • First Online:
Logic, Reasoning, and Rationality

Part of the book series: Logic, Argumentation & Reasoning ((LARI,volume 5))

Abstract

The present paper offers some results on the propagation of consistency in two systems of Logics of Formal Inconsistency(LFIs). One is the system Bk of Avron, which is an extension of the base system mbC of Carnielli, Coniglio and Marcos, and the other is an extension of Bk to the predicate calculus which will be referred to as Bk . We first present a new characterization of consistency operator in Bk. This reflects the intuition of the consistency operator quite well. Second, we prove that two kinds of propagation of consistency known in the literature are actually equivalent to certain forms of de Morgan’s laws without any occurrence of the consistency operator. Finally, we extend the result in Bk to Bk .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As is noted in da Costa (1974, p. 500), Guillaume proved that the propagation condition for negation, which was originally stated as an axiom, can be proved in da Costa’s systems C n (1 ≤ n < ω).

  2. 2.

    We shall make full use of this strong negation in the appendix dedicated to proofs of and we write ‘(CN)’ (Classical Negation) in the proof lines.

  3. 3.

    There is a shorter version of Loparić (1986), which appeared as Loparić (1977), and in this earlier paper the definition of F-saturated theory is slightly different.

References

  • Avron, A. (2009). Modular semantics for some basic logics of formal inconsistency. In W. A. Carnielli, M. E. Coniglio, & I. M. L. D’ Ottaviano (Eds.), The many sides of logic (Studies in logic, Vol. 21, pp. 15–26). London: College Publications.

    Google Scholar 

  • Avron, A., & Zamansky, A. (2007). Many-valued non-deterministic semantics for first-order logics of formal (in)consistency. In S. Aguzzoli, A. Ciabattoni, B. Gerla, C. Manara, & V. Marra (Eds.), Algebraic and proof-theoretic aspects of non-classical logics. (LNAI, Vol. 4460, pp. 1–24). Berlin/New York: Springer.

    Google Scholar 

  • Batens, D. (1980). A completeness-proof method for extensions of the implicational fragment of the propositional calculus. Notre Dame Journal of Formal Logic, 21(3), 509–517.

    Article  Google Scholar 

  • Béziau, J. Y. (1990). Loiques construites suivant les méthods de da Costa. Logique et Analyse, 131–132, 259–272.

    Google Scholar 

  • Béziau, J. Y. (1993). Nouveaux resultats et nouveau regard sur la logique paraconsistente C1. Logique et Analyse, 141–142, 45–58.

    Google Scholar 

  • Carnielli, W. A., & Marcos, J. (2002). A taxonomy of C-systems. In W. A. Carnielli, M. E. Coniglio, & I. M. L. d’Ottaviano (Eds.), Paraconsistency: The logical way to the inconsistent (pp. 1–94). New York: Marcel Dekker.

    Google Scholar 

  • Carnielli, W. A., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 14, pp. 1–93). Dordrecht/London: Springer.

    Chapter  Google Scholar 

  • da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497–510.

    Article  Google Scholar 

  • Guillaume, M. (2007). da Costa 1964 logical seminar: Revisited memories. In J. Y. Béziau, W. A. Carnielli, & D. Gabbay (Eds.), Handbook of paraconsistency (pp. 3–62). London: College Publications.

    Google Scholar 

  • Loparić, A. (1977). Une étude sémantique de quelques calculs propositionnels. Comptes Rendus de l’Academie de Sciences de Paris, 284, 835–838.

    Google Scholar 

  • Loparić, A. (1986). A semantical study of some propositional calculi. Journal of Non-classical Logic, 3, 73–95.

    Google Scholar 

  • Loparić, A., & da Costa, N. C. A. (1984). Paraconsistency, paracompleteness, and valuations. Logique et Analyse, 106, 119–131.

    Google Scholar 

  • Omori, H., & Waragai, T. (2011). Some observations on the systems LFI1 and LFI1 . In DEXA Workshops 2011, Toulouse (pp. 320–324).

    Google Scholar 

  • Waragai, T., & Omori, H. (2010). Some new results on PCL1 and its related systems. Logic and Logical Philosophy, 19, 129–158.

    Article  Google Scholar 

  • Waragai, T., & Shidori, T. (2007). A system of paraconsistent logic that has the notion of “behaving classically” in terms of the law of double negation and its relation to s5. In J. Y. Béziau, W. A. Carnielli, & D. Gabbay (Eds.), Handbook of paraconsistency (pp. 177–187). London: College Publications.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments which improved the paper in many ways. We would also like to thank Dr. Andrew Brooke-Taylor who kindly proofread our final draft and made many helpful suggestions to improve our English. The first author is a JSPS (DC1) research fellow and the present work is partially supported by a Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Omori .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we will provide the readers with full proofs of the theorems which we have omitted in the main body. We begin with the preliminaries for the proofs.

8.1.1 Preliminaries

First, note that several theorems, listed below, can be proved in Bk since it contains axioms from (A1) to (A9) together with the only rule of inference (MP):

$$\displaystyle{ (A \supset (B \supset C)) \supset (B \supset (A \supset C)) }$$
(8.44)
$$\displaystyle{ ((A \wedge B) \supset C) \supset (A \supset (B \supset C)) }$$
(8.45)
$$\displaystyle{ (A \supset (B \supset C)) \supset ((A \wedge B) \supset C) }$$
(8.46)
$$\displaystyle{ (C \supset A) \supset ((C \supset B) \supset (C \supset (A \wedge B))) }$$
(8.47)
$$\displaystyle{ (A \vee (B \wedge C))\!\,\supset \,\!(A \vee B) }$$
(8.48)
$$\displaystyle{ (A \vee (B \wedge C))\!\,\supset \,\!(A \vee C) }$$
(8.49)
$$\displaystyle{ (A\!\,\supset \,\!(B\!\,\supset \,\!(C\!\,\supset \,\!D)))\!\,\supset \,\!((C \wedge A)\!\,\supset \,\!(B\!\,\supset \,\!D) }$$
(8.50)
$$\displaystyle{ (A\!\,\supset \,\!(B\!\,\supset \,\!(C\!\,\supset \,\!D)))\!\,\supset \,\!((B \wedge A)\!\,\supset \,\!(C\!\,\supset \,\!D) }$$
(8.51)
$$\displaystyle{ (A\!\,\supset \,\!(A \wedge B)) \equiv (A\!\,\supset \,\!B) }$$
(8.52)
$$\displaystyle{ (A\!\,\supset \,\!B)\!\,\supset \,\!((B\!\,\supset \,\!A)\!\,\supset \,\!(A \equiv B)) }$$
(8.53)
$$\displaystyle{ ((A\!\,\supset \,\!B)\!\,\supset \,\!B) \equiv (A \vee B) }$$
(8.54)
$$\displaystyle{ ((A\!\,\supset \,\!B)\!\,\supset \,\!A) \equiv A }$$
(8.55)
$$\displaystyle{ (A \vee (B\!\,\supset \,\!C)) \equiv (B\!\,\supset \,\!(C \vee A)) }$$
(8.56)
$$\displaystyle{ (A \wedge B \wedge (C\!\,\supset \,\!A)) \equiv (A \wedge B) }$$
(8.57)
$$\displaystyle{ (A \wedge B \wedge (A \vee C) \wedge D) \equiv (A \wedge D \wedge B) }$$
(8.58)
$$\displaystyle{ B\!\,\supset \,\!(A \equiv (A \wedge B)) }$$
(8.59)
$$\displaystyle{ ((A \vee B)\!\,\supset \,\!C) \equiv ((A\!\,\supset \,\!C) \wedge (B\!\,\supset \,\!C)) }$$
(8.60)
$$\displaystyle{ ((C\!\,\supset \,\!A) \wedge (C\!\,\supset \,\!B)) \equiv (C\!\,\supset \,\!(A \wedge B)) }$$
(8.61)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((C\!\,\supset \,\!A) \equiv (C\!\,\supset \,\!B)) }$$
(8.62)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((C \wedge A) \equiv (C \wedge B)) }$$
(8.63)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((A \vee C) \equiv (B \vee C)) }$$
(8.64)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((C \equiv D)\!\,\supset \,\!((A \vee C \vee E) \equiv (B \vee D \vee E)) }$$
(8.65)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((C \equiv D)\!\,\supset \,\!((A\!\,\supset \,\!C) \equiv (B\!\,\supset \,\!D))) }$$
(8.66)
$$\displaystyle{ (A \equiv B)\!\,\supset \,\!((C \equiv D)\!\,\supset \,\!((A \wedge C) \equiv (B \wedge D))) }$$
(8.67)
$$\displaystyle{ (A\!\,\supset \,\!(B \equiv C))\!\,\supset \,\!((D\!\,\supset \,\!(E \equiv F))\!\,\supset \,\!((A \wedge D)\!\,\supset \,\!((B \vee E) \equiv (C \vee F)))) }$$
(8.68)
$$\displaystyle{ ((A \wedge B)\!\,\supset \,\!C) \equiv (B\!\,\supset \,\!(A\!\,\supset \,\!C)) }$$
(8.69)
$$\displaystyle{ (((A \vee B) \wedge C)\!\,\supset \,\!D) \equiv (C\!\,\supset \,\!((A\!\,\supset \,\!D) \wedge (B\!\,\supset \,\!D))) }$$
(8.70)
$$\displaystyle{ ((A \wedge B)\!\,\supset \,\!(C \wedge D)) \equiv (B\!\,\supset \,\!((A\!\,\supset \,\!C) \wedge (A\!\,\supset \,\!D))) }$$
(8.71)
$$\displaystyle{ ((A\wedge B) \vee (C \wedge D) \vee (E\!\,\supset \,\!(B \wedge D))) \equiv (E\!\,\supset \,\!((B \vee (C \wedge D)) \wedge (D \vee (A\wedge B)))) }$$
(8.72)

Also note that the following rules of inference can be derived in Bk:

$$\displaystyle{ \frac{\ A\!\,\supset \,\!B\ \ \ \ B\!\,\supset \,\!C\ } {A\!\,\supset \,\!C} }$$
(Syll.)
$$\displaystyle{ \frac{\ A \equiv B\ \ \ \ B \equiv C\ } {A \equiv C} }$$
(EqSyll.)
$$\displaystyle{ \frac{\ A \equiv (B\!\,\supset \,\!C)\ \ \ \ \ C \equiv D\ } {A \equiv (B\!\,\supset \,\!D)} }$$
(8.73)
$$\displaystyle{ \frac{\ A\!\,\supset \,\!(B \equiv (C\!\,\supset \,\!D))\ \ \ \ \ A\!\,\supset \,\!(D \equiv E)\ } {A\!\,\supset \,\!(B \equiv (C\!\,\supset \,\!E))} }$$
(8.74)
$$\displaystyle{ \frac{\ A \equiv (B \wedge C)\ \ \ \ \ B \equiv (D\!\,\supset \,\!E)\ \ \ \ \ C \equiv (D\!\,\supset \,\!F)\ } {A \equiv (D\!\,\supset \,\!(E \wedge F))} }$$
(8.75)

Second, the following theorems which contain negation will be useful.

$$\displaystyle{ (A\!\,\supset \,\!(A \wedge \neg A)) \equiv \neg A }$$
(8.76)
$$\displaystyle{ ((A\!\,\supset \,\!B)\!\,\supset \,\!\neg A) \equiv (A\!\,\supset \,\!(B\!\,\supset \,\!\neg A)) }$$
(8.77)
$$\displaystyle{ ((A\!\,\supset \,\!B)\!\,\supset \,\!\neg B) \equiv \neg B }$$
(8.78)

Finally, as for theorems in the predicate calculus Bk , note that the following formulas are provable.

$$\displaystyle{ \neg ^{{\ast}}\forall xA(x) \supset \exists x\neg ^{{\ast}}A(x) }$$
(8.79)
$$\displaystyle{ \neg ^{{\ast}}\forall xA(x) \equiv \exists x\neg ^{{\ast}}A(x) }$$
(8.80)
$$\displaystyle{ \neg ^{{\ast}}\exists xA(x) \supset \forall x\neg ^{{\ast}}A(x) }$$
(8.81)
$$\displaystyle{ \neg ^{{\ast}}\exists xA(x) \equiv \forall x\neg ^{{\ast}}A(x) }$$
(8.82)
$$\displaystyle{ (\forall xA(x) \vee B) \equiv \forall x(A(x) \vee B) }$$
(8.83)

Here, of course, x is not free in B of (8.83). Also, note that the following rules of inference can be derived in Bk :

$$\displaystyle{ \frac{A(x) \supset B(x)} {\forall xA(x) \supset \forall xB(x)} }$$
(8.84)
$$\displaystyle{ \frac{A(x) \supset B(x)} {\exists xA(x) \supset \exists xB(x)} }$$
(8.85)
$$\displaystyle{ \frac{A(x) \equiv B(x)} {\exists xA(x) \equiv \exists xB(x)} }$$
(8.86)
$$\displaystyle{ \frac{A(x) \equiv (B(x) \wedge C(x))} {\forall xA(x) \equiv (\forall xB(x) \wedge \forall xC(x))} }$$
(8.87)
$$\displaystyle{ \frac{A\!\,\supset \,\!(B(x) \equiv C(x))} {A\!\,\supset \,\!(\exists xB(x) \equiv \exists xC(x))} }$$
(8.88)

Here, of course, x is not free in A of (8.88). We shall make use of the above theorems and rules of inference in the following proofs.

Proof of Theorem 1.

For (8.1) and (8.2), just apply (8.48) and (8.49) to (k). For (8.3), we obtain \((A \vee \neg A)\!\,\supset \,\!(\neg ^{{\ast}}A\!\,\supset \,\!\neg A)\) by (CN) and therefore \(\neg ^{{\ast}}A\!\,\supset \,\!\neg A\) follows by making use of (A11) and (MP). For (8.4):

Table 1

For (8.5), it immediately follows from (8.4) by (CN) and as for (8.6), just note that we have (8.4) together with \(\neg ^{{\ast}}(A \wedge \neg A) \equiv (\neg A\!\,\supset \,\!\neg ^{{\ast}}A)\) which can be obtained by (CN). For (8.7), note that we obtain \((\neg A\!\,\supset \,\!\neg ^{{\ast}}A) \equiv (\neg A \equiv \neg ^{{\ast}}A)\) by (8.3) and (8.59), and combine it with (8.6). For the proof of (8.8), note that we obtain \((\neg A \equiv \neg ^{{\ast}}A) \equiv (\neg ^{{\ast}}\neg A \equiv A)\) by (CN). For (8.9):

Table 2

For (8.10):

Table 3

This completes the proof.

Proof of Proposition 5.

Proof proceeds analogously for all four formulas. We shall therefore only prove two cases, for (8.11) and (8.12).

For (8.11):

Table 4

For (8.12):

Table 5

This completes the proof.

Proof of Theorem 5.

For (8.19):

Table 6

For (8.20): We abbreviate the formula \(\neg (A \wedge B)\!\,\supset \,\!(\neg A \vee \neg B)\) to X.

Table 7

For (8.21):

Table 8

For (8.22): Proof is analogous to the proof for (8.21); indeed, we just need to replace \(\neg (A \vee B),(\neg A \wedge \neg B)\) with \(\neg (A\!\,\supset \,\!B),(A \wedge \neg B)\) respectively.

This completes the proof.

Proof of Proposition 6.

For (8.27):

Table 9

For (8.28):

Table 10

For (8.29):

Table 11

For (8.30):

Table 12

This completes the proof.

Proof of Theorem 7.

For (8.31):

Table 13

For (8.32):

Table 14

For (8.33):

Table 15

This completes the proof.

Proof of Lemma 5.

Since the proofs for two formulas (8.34) and (8.35) are analogous, we only prove the former whose proof runs as follows:

Table 16

This completes the proof.

Proof of Theorem 9.

For (8.38):

Table 17

For (8.39):

Table 18

This completes the proof.

Proof of Theorem 11.

For (8.42):

Table 19

For (8.43):

Table 20

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Omori, H., Waragai, T. (2014). On the Propagation of Consistency in Some Systems of Paraconsistent Logic. In: Weber, E., Wouters, D., Meheus, J. (eds) Logic, Reasoning, and Rationality. Logic, Argumentation & Reasoning, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9011-6_8

Download citation

Publish with us

Policies and ethics