Skip to main content

Energy Current and Energy Fluctuations in Driven Quantum Wires

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

We discuss the energy current and the energy fluctuations in an isolated quantum wire driven far from equilibrium. The system consists of interacting spinless fermions and is driven by a time-dependent magnetic flux. The energy current is defined by the continuity equation for the energy density which is derived both for homogeneous as well as for inhomogeneous systems. Since the total energy is not conserved in the driven system, the continuity equation includes the source terms which are shown to represent the Joule heating effects. For short times and weak drivings the energy current agrees with the linear response theory. For stronger fields or longer times of driving the system enters the quasiequilibrium regime when the energy current gradually diminishes due to the heating effects. Finally, for even stronger driving the energy current is shown to undergo a damped Bloch oscillations. The energy spread also increases upon driving. However, the time-dependence of this quantity in the low field regime is quite unexpected since it is determined mostly by the time of driving being quite independent of the instantaneous energy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsuda K, Hirabayashi I, Kawamoto K, Nabatame T, Tokizaki T, Nakamura A (1994) Femtosecond spectroscopic studies of the ultrafast relaxation process in the charge-transfer state of insulating cuprates. Phys Rev B 50:4097

    Article  ADS  Google Scholar 

  2. Okamoto H, Miyagoe T, Kobayashi K, Uemura H, Nishioka H, Matsuzaki H, Sawa A, Tokura Y (2010) Ultrafast charge dynamics in photoexcited Nd2CuO4 and La2CuO4 cuprate compounds investigated by femtosecond absorption spectroscopy. Phys Rev B 82:060513

    Article  ADS  Google Scholar 

  3. Okamoto H, Miyagoe T, Kobayashi K, Uemura H, Nishioka H, Matsuzaki H, Sawa A, Tokura Y (2011) Photoinduced transition from Mott insulator to metal in the undoped cuprates Nd2CuO4 and La2CuO4. Phys Rev B 83:125102

    Article  ADS  Google Scholar 

  4. Taguchi Y, Matsumoto T, Tokura Y (2000) Dielectric breakdown of one-dimensional Mott insulators Sr2CuO3 and SrCuO2. Phys Rev B 62:7015

    Article  ADS  Google Scholar 

  5. Oka T, Arita R, Aoki H (2003) Breakdown of a Mott insulator: a nonadiabatic tunneling mechanism. Phys Rev Lett 91:066406

    Article  ADS  Google Scholar 

  6. Oka T, Aoki H (2005) Ground-state decay rate for the zener breakdown in band and Mott insulators. Phys Rev Lett 95:137601

    Article  ADS  Google Scholar 

  7. Eckstein M, Oka T, Werner P (2010) Dielectric breakdown of Mott insulators in dynamical mean-field theory. Phys Rev Lett 105:146404

    Article  ADS  Google Scholar 

  8. Lenarčič Z, Prelovšek P (2012) Ultrafast charge recombination in photoexcited Mott-Hubbard insulator. Phys Rev Lett 108:196401

    Article  ADS  Google Scholar 

  9. White RS, Feiguin EA (2004) Real-time evolution using the density matrix renormalization group. Phys Rev Lett 93:076401

    Article  ADS  Google Scholar 

  10. Freericks KJ, Turkowski MV, Zlatić V (2006) Nonequilibrium dynamical mean-field theory. Phys Rev Lett 97:266408

    Article  ADS  Google Scholar 

  11. Mierzejewski M, Prelovšek P (2010) Nonlinear current response of an isolated system of interacting fermions. Phys Rev Lett 105:186405

    Article  ADS  Google Scholar 

  12. Mierzejewski M, Vidmar L, Bonča J, Prelovšek P (2011) Nonequilibrium quantum dynamics of a charge carrier doped into a Mott insulator. Phys Rev Lett 106:196401

    Article  ADS  Google Scholar 

  13. Prosen T, Ŝnidarič M (2010) Long-range order in nonequilibrium interacting quantum spin chains. Phys Rev Lett 105:060603

    Article  ADS  Google Scholar 

  14. Aron C, Kotliar G, Weber C (2012) Dimensional crossover driven by an electric field. Phys Rev Lett 108:086401

    Article  ADS  Google Scholar 

  15. Bukov M, Heyl M (2012) Parametric instability in periodically driven Luttinger liquids. Phys Rev B 86:054304

    Article  ADS  Google Scholar 

  16. Bonča J, Mierzejewski M, Vidmar L (2012) Nonequilibrium propagation and decay of a bound pair in driven t–J models. Phys Rev Lett 109:156404

    Article  ADS  Google Scholar 

  17. Yonemitsu K, Maeshima N, Hasegawa T (2007) Suppression of rectification at metal-Mott insulator interfaces. Phys Rev B 76:235118

    Article  ADS  Google Scholar 

  18. Sugimoto N, Onoda S, Nagaosa N (2008) Field-induced metal-insulator transition and switching phenomenon in correlated insulators. Phys Rev B 78:155104

    Article  ADS  Google Scholar 

  19. Takahashi A, Itoh H, Aihara M (2008) Photoinduced insulator-metal transition in one-dimensional Mott insulators. Phys Rev B 77:205105

    Article  ADS  Google Scholar 

  20. Steinigeweg R, Herbrych J, Prelovšek P, Mierzejewski M (2012) Coexistence of anomalous and normal diffusion in integrable Mott insulators. Phys Rev B 85:214409

    Article  ADS  Google Scholar 

  21. Vidmar L, Bonča J, Tohyama T, Maekawa S (2011) Quantum dynamics of a driven correlated system coupled to phonons. Phys Rev Lett 107:246404

    Article  ADS  Google Scholar 

  22. Vidmar L, Bonča J, Mierzejewski M, Prelovšek P, Trugman AS (2011) Trugman, Nonequilibrium dynamics of the Holstein polaron driven by an external electric field. Phys Rev B 83:134301

    Article  ADS  Google Scholar 

  23. Eckstein M, Werner P (2011) Damping of Bloch oscillations in the Hubbard model. Phys Rev Lett 107:186406

    Article  ADS  Google Scholar 

  24. Amaricci A, Weber C, Capone M, Kotliar G (2012) Approach to a stationary state in a driven Hubbard model coupled to a thermostat. Phys Rev B 86:085110

    Article  ADS  Google Scholar 

  25. Einhellinger M, Cojuhovschi A, Jeckelmann E (2012) Numerical method for non-linear steady-state transport in one-dimensional correlated conductors. Phys Rev B 85:235141

    Article  ADS  Google Scholar 

  26. Dal Conte S, Giannetti C, Coslovich G, Cilento F, Bossini D, Abebaw T, Banfi F, Ferrini G, Eisaki H, Greven M, Damascelli A, van der Marel D, Parmigiani F (2012) Disentangling the electronic and phononic glue in a High-T c superconductor. Science 335:1600

    Article  ADS  Google Scholar 

  27. Rettig L, Cortés R, Thirupathaiah S, Gegenwart P, Jeevan SH, Wolf M, Fink J, Bovensiepen U (2012) Ultrafast momentum-dependent response of electrons in antiferromagnetic EuFe2As2 driven by optical excitation. Phys Rev Lett 108:097002

    Article  ADS  Google Scholar 

  28. Novelli F, Fausti D, Reul J, Cilento F, van Loosdrecht PHM, Nugroho AA, Palstra TTM, GrÃŒninger M, Parmigiani F (2012) Ultrafast optical spectroscopy of the lowest energy excitations in the Mott insulator compound YVO3: evidence for Hubbard-type excitons. Phys Rev B 86:165135

    Article  ADS  Google Scholar 

  29. Cortés R, Rettig L, Yoshida Y, Eisaki H, Wolf M, Bovensiepen U (2011) Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O8 +Ύ. Phys Rev Lett 107:097002

    Article  ADS  Google Scholar 

  30. Kim WK, Pashkin A, SchÀfer H, Beyer M, Porer M, Wolf T, Bernhard C, Demsar J, Huber R, Leitenstorfer A (2012) Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat Mater 11:497

    Article  ADS  Google Scholar 

  31. Al-Hassanieh KA, Reboredo AF, Feiguin EA, González I, Dagotto E (2008) Excitons in the one-dimensional hubbard model: a real-time study. Phys Rev Lett 100:166403

    Article  ADS  Google Scholar 

  32. Strohmaier N, Greif D, Jördens R, Tarruell L, Moritz H, Esslinger T, Sensarma R, Pekker D, Altman E, Demler E (2010) Observation of elastic doublon decay in the Fermi-Hubbard model. Phys Rev Lett 104:080401

    Article  ADS  Google Scholar 

  33. Sensarma R, Pekker D, Altman E, Demler E, Strohmaier N, Greif D, Jördens R, Tarruell L, Moritz H, Esslinger T (2010) Lifetime of double occupancies in the Fermi-Hubbard model. Phys Rev B 82:224302

    Article  ADS  Google Scholar 

  34. Dias da Silva LGGV, Alvarez G, Dagotto E (2012) Dynamics of doublon-holon pairs in Hubbard two-leg ladders. Phys Rev B 86:195103

    Article  ADS  Google Scholar 

  35. Lenarčič Z, Prelovšek P (2013) Ultrafast charge recombination in photoexcited Mott-Hubbard insulator. Phys Rev Lett 111:016401

    Article  ADS  Google Scholar 

  36. Takahashi A, Gomi H, Aihara M (2002) Dynamics of photoexcited states in strongly correlated electron systems. Phys Rev Lett 89:206402

    Article  ADS  Google Scholar 

  37. Eckstein M, Werner P (2013) Photoinduced states in a Mott insulator. Phys Rev Lett 110:126401

    Article  ADS  Google Scholar 

  38. Leijnse M, Wegewijs RM, Flensberg K (2010) Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys Rev B 82:045412

    Article  ADS  Google Scholar 

  39. Muñoz E, Bolech JC, Kirchner S (2013) Universal out-of-equilibrium transport in Kondo-correlated quantum dots: renormalized dual Fermions on the Keldysh contour. Phys Rev Lett 110:016601

    Article  ADS  Google Scholar 

  40. Sánchez D, López R (2013) Scattering theory of nonlinear thermoelectric transport. Phys Rev Lett 110:026804

    Article  ADS  Google Scholar 

  41. Bunin G, DAlessio G, Kafri Y, Polkovnikov A (2011) Universal energy fluctuations in thermally isolated driven systems. Nat Phys 7:913917

    Google Scholar 

  42. Prosen T (2011) Exact nonequilibrium steady state of a strongly driven open XXZ chain. Phys Rev Lett 107:137201

    Article  ADS  Google Scholar 

  43. Ŝnidarič M (2011) Spin transport in a one-dimensional anisotropic Heisenberg model. Phys Rev Lett 106:220601

    Article  Google Scholar 

  44. Steinigeweg R, Brenig W (2011) Spin transport in the XXZ chain at finite temperature and momentum. Phys Rev Lett 107:250602

    Article  ADS  Google Scholar 

  45. Long WM, Prelovšek P, El Shawish S, Karadamoglou J, Zotos X (2003) Finite-temperature dynamical correlations using the microcanonical ensemble and the Lanczos algorithm. Phys Rev B 68:235106

    Article  ADS  Google Scholar 

  46. Park JT, Light CJ (1986) Unitary quantum time evolution by iterative Lanczos reduction. J Chem Phys 85(10):5870

    Article  ADS  Google Scholar 

  47. Mierzejewski M, Bonča J, Prelovšek P (2011) Integrable Mott insulators driven by a finite electric field. Phys Rev Lett 107:126601

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the NCN project “Nonequilibrium dynamics of correlated quantum systems”. D.C. acknowledges a scholarship from the FORSZT project, co-funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mierzejewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Crivelli, D., Mierzejewski, M., Prelovšek, P. (2015). Energy Current and Energy Fluctuations in Driven Quantum Wires. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_8

Download citation

Publish with us

Policies and ethics