Skip to main content

Radiation Technologies of Polymer Composites Properties Modification

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

It was established that a wide structured photoluminescence band (350–700 nm) occurs in bulk specimens of polytetrafluorethylene and its composites with multi-walled carbon nanotubes as a result of thermal and mechanical impact during preparation. Five distinct components of spectra were identified as a manifestation of –C=O– bonds excitation and energy transfer from those bonds to polyenic π-conjugated chains of different lengths. Usage of carbon nanotubes in composites with different content provides quenching of photoluminescence while preserving the nature of irradiation centers. High-energy electronic irradiation leads to further development and redistribution of photoluminescence components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Show Y, Itabashi H (2008) Electrically conductive material made from CNT and PTFE. Diam Relat Mater 17:602–605

    Article  ADS  Google Scholar 

  2. Li L, Li YC, Ni C (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128(5):1692–1699

    Article  Google Scholar 

  3. Zhang S, Minus LM, Zhu L et al (2008) Polymer transcrystallinity induced by carbon nanotubes. Polymer 49(5):1356–1364

    Article  Google Scholar 

  4. Vail RJ, Burris LD, Sawyer GW (2009) Multifunctionality of single-walled carbon nanotube-polytetrafluoroethylene nanocomposites. Wear 267(1–4):619–624

    Article  Google Scholar 

  5. Stern SE, Timmons JC (1971) Gilliam and Stern’s introduction to electronic absorption spectroscopy in organic. St. Martin’s, New York

    Google Scholar 

  6. Ellahi S, Hester ER, Williams KPJ (1995) Waveguide resonance Raman spectroscopy of degraded PVC. Spectrochim Acta A 51(4):549–553

    Article  ADS  Google Scholar 

  7. Khatipov SA, Nurmukhametov NR, Seliverstov ID, Sergeev AM (2006) Spectrophotometric and luminescent analysis of polytetrafluoroethylene treated by γ-irradiation near the melting point. Pol Sci Ser A 48(2):263–270

    Google Scholar 

  8. Jahan MS, Ermer RD, Cooke WD (1993) Effect of X irradiation on optical properties of Teflon-AF. Radiat Chem Phys 41(3):481–486

    Article  ADS  Google Scholar 

  9. Oshima A, Udagawa A, Morita Y (2001) Application of radiation-crosslinked polytetrafluoroethylene to fiber-reinforced composite materials. Rad Phys Chem 60(4–5)467–471

    Article  ADS  Google Scholar 

  10. Oshima A, Ikeda S, Kator E, Tabata Y (2001) Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene. Rad Phys Chem 62(1):39–45

    Article  ADS  Google Scholar 

  11. Bruk AM (2006) Radiation-thermal crosslinking of polytetrafluoroethylene. High Energy Chem 40(6):357–369

    Article  Google Scholar 

  12. Khatipov AS, Konova ME, Artamonov AN (2009) Radiation-modified polytetrafluoroethylene: structure and properties. Rus J Gen Chem 79(9):2006–2015

    Article  Google Scholar 

  13. Konova ME, Sakhno YE, Khatipov AS et al (2011) Mechanical and optical properties of polytetrafluoroethylene treated by γ-irradiation near the melting point. Phys Chem Solid State 12(4):1013–1017

    Google Scholar 

  14. Nurmukhametov NR, Klimenko GV, Seliverstov ID, Sergeev MA, Khatipov SA (2008) Luminescence and color of radiation-modified polytetrafluoroethylene in blocks. Polym Sci Ser A 50(12):1226–1232

    Article  Google Scholar 

  15. Zakrewski AV, Baptizmanski VV, Tomashevski AY (1968) FTT 10(6):1699–1704 (in Russian)

    Google Scholar 

  16. Butyagin PY, Dubinskaya MA, Radtsig AV (1969) Electron spin resonance spectra, conformation, and chemical properties of free radicals in solid polymers. Russ Chem Rev 38(4):290–305

    Article  ADS  Google Scholar 

  17. Gubanov IA (1981) Evaluate the gap chain polyethylene remote atom hydrogen. FTT 23(12):3684–3686 (in Russian)

    Google Scholar 

  18. Tomashevskii EE, Kvachadze GN (2005) Middle macroradicals and their influence on the strength of oriented polymers. Phys Solid State 47(5):927–933

    Article  ADS  Google Scholar 

  19. Robaidi AA, Khateeb AS, Dweiri R, Gaghbeeb T (2012) The effect of radiations on the thermal expansion of kaolin nano filled-XLPE materials. Int J Metall Mater Sci Eng 2(3):74–84

    Google Scholar 

  20. Milinchuk KV, Klinshpot RE, Pshezhetskii SY (1980) Macroradicals. Chimia, Moscow

    Google Scholar 

  21. Pshezhetskii SY, Kotov GA, Milinchuk KV, Roginskii AV, Tupikov VI (1972) EPR of free radicals in radiation chemistry. Chimia, Moscow

    Google Scholar 

  22. Chatipov AS, Artamonov AN (2008) Creating a new sealing and antifriction material based on radiation-modified polytetrafluoroethylene. Ros Chim J LII(3):89–97

    Google Scholar 

  23. Pikaev KA (1987) Modern radiation chemistry. Solid body and polymers. Applied aspects. Nauka, Moscow

    Google Scholar 

  24. Singh I, Mathir CP, Bhatnagar KP (2009) Study of photoluminescence quenching and DC conductivity measurements in polymer-SWNT composite films for various SWNT concentrations. Int J Nanotechnol 6(7–8):745–752

    Article  Google Scholar 

  25. Nismy AN, Jayawardena KDGI, Adikaari AADT, Silva SRP (2011) Photoluminescence quenching in carbon nanotube-polymer/fullerene films: carbon nanotubes as exciton dissociation centres in organic photovoltaics. Adv Mater 23(33):3796–3800

    Google Scholar 

  26. Kompan EM, Aksyanov GI (2009) Photoluminescence of friction-induced polymer degradation products. Phys Solid State 51(5):1083–1086

    Article  ADS  Google Scholar 

  27. Vettegren IV, Savitskii VA, Scherbakov PI (2008) Near-UV narrow-band luminescence of polyethylene and polytetrafluoroethylene. Tech Phys Lett 34(7):629–632

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nychyporenko, O.S. et al. (2015). Radiation Technologies of Polymer Composites Properties Modification. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_7

Download citation

Publish with us

Policies and ethics