Skip to main content

Magnetic Resonance Study of Nickel and Nitrogen Co-modified Titanium Dioxide Nanocomposites

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

Nickel and nitrogen co-modified TiO2, nNi,N-TiO2 (n = 1, 5 and 10 wt% of Ni) nanocomposites were prepared by impregnation of amorphous titanium dioxide with Ni(NO\(_{3})_{2}\cdot \) 5H2O followed by high temperature calcination at 800 C in ammonia atmosphere. Temperature dependence of the FMR/EPR spectra of nNi,N-TiO2 samples in 4–290 K range has been investigated. The FMR spectra of nickel nanoparticle agglomerates were studied by decomposition into three components. Temperature dependence of FMR parameters (resonance field, two types of linewidth, integrated intensity) of components were analyzed to determine their origin. In addition, the EPR spectra of trivalent titanium ions were recorded in the low temperature range. The connection between photocatalytic activity of the investigated nanocomposites and their magnetic properties was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified N-TiO2. Science 297:2243–2245

    Article  ADS  Google Scholar 

  2. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  Google Scholar 

  3. Jameson JR, Fukuzumi Y, Wang Z, Griffin P, Tsunoda K, Meijer G, Ingmar NY (2007) Field-programmable rectification in rutile TiO2 crystals. Appl Phys Lett 91:112101/1-3

    Article  ADS  Google Scholar 

  4. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  ADS  Google Scholar 

  5. Chen H, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  Google Scholar 

  6. Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309

    Article  Google Scholar 

  7. Nacevski G, Marinkovski M, Tomovska R, Fajgar R (2011) Preparation and characterization of TiO2-based photocatalysts by chemical vapour deposition. In: Nanotechnological basis for advanced sensors. NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 65–71

    Google Scholar 

  8. Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115:4953–4958

    Article  Google Scholar 

  9. Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V, Ioannidis N, Kontos AG, Falaras P, Dunlop PSM, Byrne JA, Dionysiou DD (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology 23:294003/1-10

    Google Scholar 

  10. Park B, You N-H, Reichmanis E (2012) Exciton dissociation and charge trapping at poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester bulk heterojunction interfaces: Photo-induced threshold voltage shifts in organic field-effect transistors and solar cells. J Appl Phys 111:084908/1-7

    ADS  Google Scholar 

  11. Cowan SR, Wang J, Yi J, Lee Y-J, Olson DC, Hsu JWP (2013) Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: a white-light biased external quantum efficiency study. J Appl Phys 113:154504/1-9

    Article  ADS  Google Scholar 

  12. Zhou N, Polavarapu L, Gao N, Pan Y, Yuan P, Wang Q, Xu QH (2013) TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5:4236–4241

    Article  ADS  Google Scholar 

  13. Chen J, Lu GH, Cao H, Wang T, Xu Y (2008) Ferromagnetic mechanism in Ni-doped anatase TiO2. Appl Phys Lett 93:172504/1-3

    ADS  Google Scholar 

  14. Park YR, Choi S, Lee JH, Kim KJ, Kim KJ (2007) Ferromagnetic properties of Ni-doped rutile TiO2-δ. J Korean Phys Soc 50:638–642

    Article  Google Scholar 

  15. Shao W, Nabb D, Renevier N, Sherrington I, Luo JK (2012) Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. Conf Ser Mater Sci Eng 40:012043/1-5

    Google Scholar 

  16. Mele G, Del Sole R, Vasapollo G, Marcı G, Lopez EG, Palmisano L, Coronado JM, Alonso MDH, Malitesta C, Guascito MR (2005) TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J Phys Chem B 109:12347–12352

    Article  Google Scholar 

  17. Yang S, Halliburton LE, Manivannan A, Bunton PH, Baker DB, Klemm M, Horn S, Fujishima A (2009) Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: oxygen vacancies and Ti3+ ions. Appl Phys Lett 94:162114/1-3

    ADS  Google Scholar 

  18. Tian B, Li C, Gu F, Jiang H, Hu Y, Zhang J (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227

    Article  Google Scholar 

  19. Brandão FD, Pinheiro MVB, Ribeiro GM, Medeiros-Ribeiro G, Krambrock K (2009) Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2. Phys Rev B 80:235204/1-7

    Article  ADS  Google Scholar 

  20. Yang S, Brant AT, Halliburton LE (2010) Photoinduced self-trapped hole center in TiO2 crystals. Phys Rev B 82:035209/1-5

    ADS  Google Scholar 

  21. Shkrob IA, Marin TW, Chemerisov SD, Sevilla MD (2011) Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides. J Phys Chem C 115:4642–4648

    Article  Google Scholar 

  22. Guskos N, Guskos A, Typek J, Berczynski P, Dolat D, Grzmil B, Morawski A (2012) Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater Sci Eng B 177:223–227

    Article  Google Scholar 

  23. Guskos N, Guskos A, Zolnierkiewicz G, Typek J, Berczynski P, Dolat D, Grzmil B, Ohtani B, Morawski AW (2012) EPR, spectroscopic and photocatalytic properties of N-modified TiO2 prepared by different annealing and water-rinsing processes. Mater Chem Phys 136:889–896

    Article  Google Scholar 

  24. Guskos N, Typek J, Guskos A, Zolnierkiewicz G, Berczynski P, Dolat D, Grzmil B, Morawski A (2013) Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. Cent Eur J Chem 11:1996–2004

    Article  Google Scholar 

  25. Guskos N, Glenis S, Zolnierkiwicz G, Guskos A, Typek J, Berczynski P, Dolat D, Grzmil B, Ohtani B, Morawski AW (2014) Magnetic resonance study of co-modified (Fe,N)-TiO2. J Alloy Compd 606:32–36

    Article  Google Scholar 

  26. Dolat D, Mozia S, Ohtani B, Moszynski D, Guskos N, Lendzion-Bielun Z, Morawski AW (2014) Preparation, characterization and charge transfer studies of nickel – modified and nickel, nitrogen co-modified rutile titanium dioxide for photocatalytic application. Chem Eng J 239:149–157

    Article  Google Scholar 

  27. Guskos N, Likodimos V, Glenis S, Maryniak M, Baran M, Szymczak R, Roslaniec Z, Kwiatkowska M, Petridis D (2008) Magnetic properties of γ-Fe2O3/poly(ether-ester) nanocomposites. J Nanosci Nanotech 8:2127–2134

    Article  Google Scholar 

  28. Guskos N, Maryniak M, Typek J, Podsiadly P, Narkiewicz U, Senderek E, Roslaniec Z (2009) Carbon covered magnetic nickel nanoparticles embedded in PBT-PTMO polymer: preparation and magnetic properties. J Non-Cryst Solids 355:1400–1404

    Article  ADS  Google Scholar 

  29. Guskos N, Typek J, Padlyak BV, Gorelenko YuK, Pelech I, Narkiewicz U, Piesowicz E, Guskos A, Roslaniec Z (2010) In situ synthesis, morphology and magnetic properties of poly(ether-ester) multiblock copolymer/carbon-covered nickel nanosystems. J Non-Cryst Solids 356(37):1893–1901

    Article  ADS  Google Scholar 

  30. Koksharov YA, Gubin SP, Kosobudsky ID, Yurkov GY, Pankratov DA, Ponomarenko LA, Mikheev MG, Beltran M, Khodorkovsky Y, Tishin AM (2000) Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles. Phys Rev B 63:012407/1-4

    Article  ADS  Google Scholar 

  31. Xiong L-B, Li J-L, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:831524/1-13

    Article  Google Scholar 

  32. Nakaoka Y, Nosaka Y (1997) ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. J Photochem Photobiol A 110:299–305

    Article  Google Scholar 

  33. Camargo PHC, Nunes GG, de Sá EL, Tremiliosi-Filho G, Evans DJ, Zarbin AJG, Soares JF (2008) Synthesis of Fe/Ti oxides from a single source alkoxide precursor under inert atmosphere. J Braz Chem Soc 19:1501–1512

    Article  Google Scholar 

  34. Guskos N, Likodimos V, Glenis S, Typek J, Maryniak M, Roslaniec Z, Baran M, Szymczak R, Petridis D, Kwiatkowska M (2006) Matrix effects on the magnetic properties of γ-Fe2O3 nanoparticles dispersed in a multiblock copolymer. J Appl Phys 99:084307/1-7

    Article  ADS  Google Scholar 

  35. Guskos N, Maryniak M, Typek J, Guskos A, Szymczak R, Senderek E, Roslaniec Z, Petridis D, Aidinis K (2008) Influence of maghemite concentration on magnetic interactions in maghemite/PTT-block-PTMO nanocomposite. J Non-Cryst Solids 354:4401–4406

    Article  ADS  Google Scholar 

  36. Helminiak A, Arabczyk W, Zolnierkiewicz G, Guskos N, Typek J (2011) FMR study of the influence of carburization levels by methane decomposition on nanocrystalline iron. Rev Adv Mater Sci 29:166–174

    Google Scholar 

  37. Kliava J (2009) In: Gubin SP (ed) Magnetic nanoparticles. Wiley-VCH, Weinheim, p 255

    Chapter  Google Scholar 

  38. Kittel Ch (1967) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  39. Gong W, Li H, Zhao Z, Chen J (1991) Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. J Appl Phys 69:5119–5121

    Article  ADS  Google Scholar 

  40. Tian J, Gao H, Deng H, Sun L, Kong H, Yang P, Chu J (2013) Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (1 0 0) substrates by sol -gel process. J Alloy Compd 581:318–323

    Article  Google Scholar 

  41. Zhao YL, Motapothula M, Yakovlev NL, Liu ZQ, Dhar S, Rusydi A, Ariando RA, Breese MBH, Wang Q, Venkatesan T (2012) Reversible ferromagnetism in rutile TiO2 single crystals induced by nickel impurities. Appl Phys Lett 101:142105/1-4

    ADS  Google Scholar 

  42. Dzhezherya Yu, Novak IYu, Kruchinin S (2010) Orientational phase transitions of a lattice of magnetic dots embedded in a London-type superconductor. Supercond Sci Technol 23:105011/1-5

    Article  ADS  Google Scholar 

  43. Kruchinin S, Nagao H (2012) Nanoscale superconductivity. Int J Mod Phys B 26:1230013

    Article  ADS  Google Scholar 

  44. Bahadur N, Pasricha R, Govind, Chand S, Kotnala RK (2012) Effect of Ni doping on the microstructure and high Curie temperature ferromagnetism in solEffect of Ni doping on the microstructure and high Curie temperature ferromagnetism in sol-gel derived titania powdersgel derived titania powders. Mater Chem Phys 133:471–479

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Centre for Science and Ministry of Science and Higher Education of Poland under project No. MNiSW/DPN/4878/TD/2010. The authors would like to thank professor Barbara Grzmil from West Pomeranian University of Technology, Szczecin for helpful assistance during XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Guskos, N. et al. (2015). Magnetic Resonance Study of Nickel and Nitrogen Co-modified Titanium Dioxide Nanocomposites. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_4

Download citation

Publish with us

Policies and ethics