Skip to main content

Spin Control in Quantum Dots for Quantum Information Processing

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

In this paper, a detailed analysis of anisotropic effects on the phonon induced spin relaxation rate in InAs semiconductor quantum dots (QDs) is carried out for possible implementation towards QDs in security devices, encrypted data and quantum information processing. We show that anisotropic gate potentials enhance the phonon mediated spin-flip rate and reduce the cusp-like structure to lower magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulaev DV, Loss D (2005) Spin relaxation and anticrossing in quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 71:205324

    Article  ADS  Google Scholar 

  2. Bulaev DV, Loss D (2005) Spin relaxation and decoherence of holes in quantum dots. Phys Rev Lett 95:076805

    Article  ADS  Google Scholar 

  3. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C Solid State Phys 17:6039

    Article  ADS  Google Scholar 

  4. Cardona M, Christensen NE, Fasol G (1988) Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors. Phys Rev B 38:1806

    Article  ADS  Google Scholar 

  5. Comsol multiphysics version 3.5a. (www.comsol.com).

  6. Dresselhaus G (1955) Spin-orbit coupling effects in zinc blende structures. Phys Rev 100:580

    Article  ADS  MATH  Google Scholar 

  7. Elzerman JM, Hanson R,Willems van Beveren LH,Witkamp B, Vandersypen LMK, Kouwen-hoven LP (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431

    Article  ADS  Google Scholar 

  8. Golovach VN, Khaetskii A, Loss D (2004) Phonon-induced decay of the electron spin in quantum dots. Phys Rev Lett 93:016601

    Article  ADS  Google Scholar 

  9. Khaetskii AV, Nazarov YV (2000) Spin relaxation in semiconductor quantum dots. Phys Rev B 61:12639

    Article  ADS  Google Scholar 

  10. Khaetskii AV, Nazarov YV (2001) Spin-flip transitions between zeeman sublevels in semiconductor quantum dots. Phys Rev B 64:125316

    Article  ADS  Google Scholar 

  11. Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G, Finley JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81

    Article  ADS  Google Scholar 

  12. Mahapatra DR, Willatzen M, Melnik RVN, Lassen B (2012) Electron energy levels in GaAs-\(\mathrm{Ga}_{1-x}\mathrm{Al}_{x}\mathrm{As}\) heterojunctions. NANO 07:1250031

    Article  Google Scholar 

  13. Nowak MP, Szafran B, Peeters FM, Partoens B, Pasek WJ (2011) Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field. Phys Rev B 83:245324

    Article  ADS  Google Scholar 

  14. Olendski O, Shahbazyan TV (2007) Theory of anisotropic spin relaxation in quantum dots. Phys Rev B 75:041306

    Article  ADS  Google Scholar 

  15. Prabhakar S, Raynolds JE (2009) Gate control of a quantum dot single-electron spin in realistic confining potentials: Anisotropy effects. Phys Rev B 79:195307

    Article  ADS  Google Scholar 

  16. Prabhakar S, Raynolds J, Inomata A, Melnik R (2010) Manipulation of single electron spin in a gaas quantum dot through the application of geometric phases: The feynman disentangling technique. Phys Rev B 82:195306

    Article  ADS  Google Scholar 

  17. Prabhakar S, Raynolds JE, Melnik R (2011) Manipulation of the landé g factor in inas quantum dots through the application of anisotropic gate potentials: Exact diagonalization, numerical, and perturbation methods. Phys Rev B 84:155208

    Article  ADS  Google Scholar 

  18. Prabhakar S, Melnik R, Bonilla LL (2012) The influence of anisotropic gate potentials on the phonon induced spin-flip rate in gaas quantum dots. Appl Phys Lett 100:023108

    Article  ADS  Google Scholar 

  19. Prabhakar S, Melnik R, Bonilla LL (2013) Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 87:235202

    Article  ADS  Google Scholar 

  20. Pryor CE, Flatté ME (2006) Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 96:026804

    Article  ADS  Google Scholar 

  21. Pryor CE, Flatté ME (2007) Erratum: Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 99:179901

    Article  ADS  Google Scholar 

  22. Sousa R, Sarma S (2003) Gate control of spin dynamics in III-V semiconductor quantum dots. Phys Rev B 68:155330

    Article  ADS  Google Scholar 

  23. Stano P, Fabian J (2006) Orbital and spin relaxation in single and coupled quantum dots. Phys Rev B 74:045320

    Article  ADS  Google Scholar 

  24. Stern F, Sarma S (1984) Electron energy levels in GaAs-\(\mathrm{Ga}_{1-x}\mathrm{Al}_{x}\mathrm{As}\) heterojunctions. Phys Rev B 30:840

    Article  ADS  Google Scholar 

  25. Takahashi S, Deacon RS, Yoshida K, Oiwa A, Shibata K, Hirakawa K, Tokura Y, Tarucha S (2010) Large anisotropy of the spin-orbit interaction in a single InAs self-assembled quantum dot. Phys Rev Lett 104:246801

    Article  ADS  Google Scholar 

  26. Woods LM, Reinecke TL, Lyanda-Geller Y (2002) Spin relaxation in quantum dots. Phys Rev B 66:161318

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by NSERC and CRC programs (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prabhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Prabhakar, S., Melnik, R., Bonilla, L.L. (2015). Spin Control in Quantum Dots for Quantum Information Processing. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_1

Download citation

Publish with us

Policies and ethics