Advertisement

Emerging BCI Opportunities from a Market Perspective

  • Christoph GugerEmail author
  • Brendan Z. Allison
  • Günter Edlinger
Chapter
Part of the The International Library of Ethics, Law and Technology book series (ELTE, volume 12)

Abstract

Brain–computer interfaces have been improved dramatically over recent years and many new applications have been developed. This chapter describes some of the most important and interesting systems and concepts that are already available on the market or that will come to market soon: spelling, gaming, painting, avatar control, stroke rehabilitation, and functional mapping. With technology improvements, the real-time analysis of brain functions will allow many new applications in the coming years.

Keywords

Motor Imagery Assistive Technology Smart Home Stroke Rehabilitation Electrical Cortical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allison, B.Z. 2010. Toward ubiquitous BCIs. In Brain-computer interfaces: Revolutionizing human-computer interaction, ed. B. Graimann, B.Z. Allison, and G. Pfurtscheller, 357–387. Berlin/Heidelberg: Springer.Google Scholar
  2. Allison, B.Z. 2011. Trends in BCI research: Progress today, backlash tomorrow? ACM Crossroads 18(1): 18–22.CrossRefGoogle Scholar
  3. Allison, B.Z., D. Valbuena, T. Lueth, A. Teymourian, I. Volosyak, and A. Gräser. 2010. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(2): 107–116.CrossRefGoogle Scholar
  4. Brunner, P., A.L. Ritaccio, T.M. Lynch, J.F. Emrich, J.A. Wilson, J.C. Williams, E.J. Aarnoutse, N.F. Ramsey, E.C. Leuthardt, H. Bischof, and G. Schalk. 2009. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy and Behavior 15(3): 278–286.CrossRefGoogle Scholar
  5. Brunner, P., A.L. Ritaccio, J.F. Emrich, H. Bischof, and G. Schalk. 2011. Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Frontiers in Neuroscience 5: 5.CrossRefGoogle Scholar
  6. Brunner, C., G. Andreoni, L. Bianchi, B. Blankertz, C. Breitweiser, S. Kanoh, C. Kothe, A. Lecuyer, S. Makeig, J. Mellinger, P. Perego, Y. Renard, G. Schalk, I.P. Susila, B. Venthur, and G. Müller-Putz. 2013. BCI software platforms. In Toward practical BCIs: Bridging the gap from research to real-world applications, ed. B.Z. Allison, S. Dunne, R. Leeb, J. Millan, and A. Nijholt, 303–331. Berlin: Springer.Google Scholar
  7. Chi, Y.M., Y.-T. Wang, Y. Wang, C. Maier, T.-P. Jung, and G. Cauwenberghs. 2012. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20(2): 228–235.CrossRefGoogle Scholar
  8. Edlinger, G., and C. Guger. 2013. Can dry EEG sensors improve the usability of SMR, P300 and SSVEP based BCIs? In Toward practical BCIs: Bridging the gap from research to real-world applications, ed. B.Z. Allison, S. Dunne, R. Leeb, J. Millan, and A. Nijholt, 281–300. Berlin: Springer.Google Scholar
  9. Fazel-Rezai, R., B.Z. Allison, E. Sellers, C. Guger, S. Kleih, and A. Kübler. 2012. P300 brain computer interface: Current challenges and future directions. Frontiers in Neuroengineering 5: 14.CrossRefGoogle Scholar
  10. Guger, C., S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica, and G. Edlinger. 2009. How many people are able to control a P300-based brain-computer interface? Neuroscience Letters 462(1): 94–98.CrossRefGoogle Scholar
  11. Guger, C., G. Krausz, B.Z. Allison, and G. Edlinger. 2012. A comparison of dry and gel-based electrodes for P300 BCIs. Frontiers in Neuroscience 6: 60.Google Scholar
  12. Guger, C., B. Allison, and G. Edlinger. 2013. The state of the art in BCI research: 2011. New York: Springer.Google Scholar
  13. Jin, J., B.Z. Allison, T. Kaufmann, A. Kübler, Y. Zhang, X. Wang, and A. Cichocki. 2012. The changing face of P300 BCIs: A comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLoS One. doi:  10.1371/journal.pone.0049688
  14. Kapeller, C., C. Hintermüller, and C. Guger. 2012. Augmented control of an avatar using an SSVEP based BCI. In Proceedings of the 3rd Augmented Human International Conference. ACM, New York, USA.Google Scholar
  15. Kaufmann, T., S.M. Schulz, C. Grünzinger, and A. Kübler. 2011. Flashing characters with famous faces improves ERP-based brain-computer interface performance. Journal of Neural Engineering 8: 056016.CrossRefGoogle Scholar
  16. Lotte, F., J. Faller, C. Guger, Y. Renard, G. Pfurtscheller, A. Lecuyer, and R. Leeb. 2013. Combining BCI with virtual reality: Towards new applications and improved BCI. In Toward practical BCIs: Bridging the gap from research to real-world applications, ed. B.Z. Allison, S. Dunne, R. Leeb, J. Millan, and A. Nijholt, 197–220. Berlin: Springer.Google Scholar
  17. Münßinger, J.I., S. Halder, S.C. Kleih, A. Furdea, V. Raco, A. Hösle, and A. Kübler. 2010. Brain painting: First evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Frontiers in Neuroscience 4: 18.Google Scholar
  18. Nijboer, F., B.Z. Allison, S. Dunne, D. Plass-Oude Bos, N. Nijholt, and P. Haselager. 2011. A preliminary overview on the perception of marketability of Brain-Computer Interfaces (BCI) and initial development of a repository of BCI companies. In Proceedings of the 5th International Brain-Computer Interface Conference 2011, 344–347. Asilomar.Google Scholar
  19. Ortner, R., B.Z. Allison, G. Korisek, H. Gaqql, and G. Pfurtscheller. 2011. An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(1): 1–5.CrossRefGoogle Scholar
  20. Ortner, R., D.C. Irimia, J. Scharinger, and C. Guger. 2012. A motor imagery based brain-computer interface for stroke rehabilitation. Studies in Health Technology and Informatics 181: 319–323.Google Scholar
  21. Scherer, R., J. Faller, D. Balderas, E.V.C. Friedrich, M. Pröll, B.Z. Allison, and G. Müller-Putz. 2012. Brain-Computer Interfacing: More than the sum of its parts. Journal of Soft Computing Interfacing. doi: 10.1007/s00500-012-0895-4.Google Scholar
  22. Wolpaw, J.R., N. Birbaumerm, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan. 2002. Brain-computer interfaces for communication and control. Clinical Neurophysiology 113: 767–791.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Christoph Guger
    • 1
    Email author
  • Brendan Z. Allison
    • 2
  • Günter Edlinger
    • 1
  1. 1.g.tec medical engineering GmbHSchiedlbergAustria
  2. 2.Cognitive Science DepartmentUC San DiegoLa JollaUSA

Personalised recommendations