A Tour of Some Brain/Neuronal–Computer Interfaces

  • Kevin WarwickEmail author
Part of the The International Library of Ethics, Law and Technology book series (ELTE, volume 12)


In this chapter different types of brain/neuronal–computer interfaces are discussed and considered. This is all done from a practical perspective with applications in mind, although some of the implications are also considered. In particular results from experiments are discussed in terms of their meaning and application possibilities. The article is written from the perspective of scientific experimentation opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are important elements.


Deep Brain Stimulation Computer Interface Neural Signal Microelectrode Array Human Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beauchamp, M., K. Lee, J. Haxby, and A. Martin. 2003. FMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience 15(7): 991–1001.CrossRefGoogle Scholar
  2. Bekey, G. 2005. Autonomous robots. Cambridge: MIT Press.Google Scholar
  3. Brooks, R. 2002. Robot. London: Penguin.Google Scholar
  4. Chiappalone, M., A. Vato, L. Berdondini, M. Koudelka-Hep, and S. Martinoia. 2007. Network dynamics and synchronous activity in cultured cortical neurons. International Journal of Neural Systems 17: 87–103.CrossRefGoogle Scholar
  5. Daly, I., S. Nasuto, and K. Warwick. 2011. Single tap identification for fast BCI control. Cognitive Neurodynamics 5(1): 21–30.CrossRefGoogle Scholar
  6. DeMarse, T., D. Wagenaar, A. Blau, and S. Potter. 2001. The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots 11: 305–310.CrossRefGoogle Scholar
  7. Donoghue, J., A. Nurmikko, G. Friehs, and M. Black. 2004. Development of a neuromotor prosthesis for humans. Chapter 63 in Advances in Clinical Neurophysiology. Supplements to Clinical Neurophysiology 57: 588–602.Google Scholar
  8. Hameed, J., I. Harrison, M. Gasson, and K. Warwick. 2010. A novel human-machine interface using subdermal magnetic implants. In Proceedings of the IEEE international conference on cybernetic intelligent systems, 106–110, New York: Pantheon Books.Google Scholar
  9. Hochberg, L., M. Serruya, G. Friehs, J. Mukand, M. Saleh, A. Caplan, A. Branner, D. Chen, R. Penn, and J. Donoghue. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442: 164–171.CrossRefGoogle Scholar
  10. Kennedy, P., D. Andreasen, P. Ehirim, B. King, T. Kirby, H. Mao, and M. Moore. 2004. Using human extra-cortical local field potentials to control a switch. Journal of Neural Engineering 1(2): 72–77.CrossRefGoogle Scholar
  11. Kumar, N. 2008. Brain computer interface. Cochin University of Science & Technology Report. Kerala, India.Google Scholar
  12. Millan, J., F. Renkens, J. Mourino, and W. Gerstner. 2004. Non-invasive brain-actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engineering 51(6): 1026–1033.CrossRefGoogle Scholar
  13. Palaniappan, R. 2008. Two-stage biometric authentication method using thought activity brain waves. International Journal of Neural Systems 18(1): 59–66.CrossRefGoogle Scholar
  14. Pan, S., K. Warwick, M. Gasson, J. Burgess, S. Wang, T. Aziz. and J. Stein. 2007. Prediction of Parkinson’s disease tremor onset with artificial neural networks. In Proceedings of the IASTED conference BioMed, 341–345, Innsbruck, Austria.Google Scholar
  15. Pinter, M., M. Murg, F. Alesch, B. Freundl, R. Helscher, and H. Binder. 1999. Does deep brain stimulation of the nucleus ventralis intermedius affect postural control and locomotion in Parkinson’s disease? Movement Disorders 14(6): 958–963.CrossRefGoogle Scholar
  16. Rainer, G., M. Augath, T. Trinath, and N. Logothetis. 2001. Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey. Current Biology 11(11): 846–854.CrossRefGoogle Scholar
  17. Tanaka, K., K. Matsunaga, and H. Wang. 2005. Electroencephalogram-based control of an electric wheelchair. IEEE Transactions on Robotics 21(4): 762–766.CrossRefGoogle Scholar
  18. Trejo, L., R. Rosipal, and B. Matthews. 2006. Brain-computer interfaces for 1-D and 2-D cursor control: Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2): 225–229.CrossRefGoogle Scholar
  19. Warwick, K. 2010. Implications and consequences of robots with biological brains. Ethics and Information Technology 12(3): 223–234.CrossRefGoogle Scholar
  20. Warwick, K., M. Gasson, B. Hutt, I. Goodhew, P. Kyberd, B. Andrews, P. Teddy, and A. Shad. 2003. The application of implant technology for cybernetic systems. Archives of Neurology 60(10): 1369–1373.CrossRefGoogle Scholar
  21. Warwick, K., M. Gasson, B. Hutt, I. Goodhew, P. Kyberd, H. Schulzrinne, and X. Wu. 2004. Thought communication and control: A first step using radiotelegraphy. IEE Proceedings on Communications 151(3): 185–189.CrossRefGoogle Scholar
  22. Warwick, K., S. Nasuto, V. Becerra, and B. Whalley. 2010. Experiments with an in-vitro Robot Brain. In Computing with instinct, LNCS series, vol. 5897, ed. Y. Cai, 1–15. Berlin/Heidelberg: Springer. ISBN: 978-3-642-19756-7.CrossRefGoogle Scholar
  23. Wu, D., K. Warwick, Z. Ma, J. Burgess, S. Pan, and T. Aziz. 2010. Prediction of Parkinson’s disease tremor onset using radial basis function neural networks. Expert Systems with Applications 37(4): 2923–2928.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Systems EngineeringUniversity of ReadingReadingUK

Personalised recommendations