Skip to main content

Activation of Mitochondria-Driven Pathways by Artemisinin and Its Derivatives

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium
  • 1251 Accesses

Abstract

Mitochondria have recently emerged as promising agents for cancer therapy. Of particular interest and potential clinical relevance are agents that target these organelles, promoting cell death. There are literally thousands of compounds that act on mitochondria and destabilise them. Of these, naturally occurring compounds are particularly interesting, since they are often more ‘biocompatible’; besides, natural compounds can be lead drugs for the design of novel and more efficient anti-cancer agents. In this paper, we focus on the natural product artemisin and its semisynthetic derivatives, and document the molecular mechanism of their activity and their potential use as clinically relevant anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N, International Artemisinin Study Group (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363:9–17

    Article  CAS  PubMed  Google Scholar 

  • Anfosso L, Efferth T, Albini A, Pfeffer U (2006) Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J 6:269–278

    CAS  PubMed  Google Scholar 

  • Bachmeier B, Fichtner I, Killian PH, Kronski E, Pfeffer U, Efferth T (2011) Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells. PLoS One 6:e20550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B (2011) Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther 10:2224–2233

    Article  CAS  PubMed  Google Scholar 

  • Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A, Schuler G (2005) Artesunate in the treatment of metastatic uveal melanoma–first experiences. Oncol Rep 14:1599–1603

    CAS  PubMed  Google Scholar 

  • Biasutto L, Dong LF, Zoratti M, Neuzil J (2010) Mitochondrially targeted anti-cancer agents. Mitochondrion 10:670–681

    Article  CAS  PubMed  Google Scholar 

  • Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:2612–2619

    Article  CAS  PubMed  Google Scholar 

  • Chow LM, Chan TH (2009) Novel classes of dimer antitumour drug candidates. Curr Pharm Des 15:659–674

    Article  CAS  PubMed  Google Scholar 

  • D’Souza GG, Wagle MA, Saxena V, Shah A (2011) Approaches for targeting mitochondria in cancer therapy. Biochim Biophys Acta 1807:689–696

    Article  PubMed  Google Scholar 

  • Dell’Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A, Efferth T (2004) Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol 68:2359–2366

    Article  PubMed  Google Scholar 

  • Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D, Schlegel R (2005) Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res 65:10854–10861

    Article  CAS  PubMed  Google Scholar 

  • Du JH, Zhang HD, Ma ZJ, Ji KM (2010) Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65:895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Updat 8:85–97

    Article  CAS  PubMed  Google Scholar 

  • Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7:407–421

    Article  CAS  PubMed  Google Scholar 

  • Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin–from bench to bedside. Planta Med 73:299–309

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its derivatives. Crit Rev Toxicol 40:405–421

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol 68:3–10

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Volm M (2005) Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate. In Vivo 19:225–232

    CAS  PubMed  Google Scholar 

  • Efferth T, Rücker G, Falkenberg M, Manns D, Olbrich A, Fabry U, Osieka R (1996) Apoptosis in KG-1a leukemic cells treated with investigational drugs. Arzneimittelforschung 46:196–200

    CAS  PubMed  Google Scholar 

  • Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–773

    CAS  PubMed  Google Scholar 

  • Efferth T, Marschall M, Wang X, Huong SM, Hauber I, Olbrich A, Kronschnabl M, Stamminger T, Huang ES (2002a) Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med 80:233–242

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Olbrich A, Bauer R (2002b) mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol 64:617–623

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Briehl MM, Tome ME (2003a) Role of antioxidant genes for the activity of artesunate against tumor cells. Int J Oncol 23:1231–1235

    CAS  PubMed  Google Scholar 

  • Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch ME, Volm M, Tew KD, Ross DD, Funk JO (2003b) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol 64:382–394

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Benakis A, Romero MR, Tomicic M, Rauh R, Steinbach D, Hafer R, Stamminger T, Oesch F, Kaina B, Marschall M (2004) Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic Biol Med 37:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2:e693

    Article  PubMed  PubMed Central  Google Scholar 

  • Efferth T, Kahl S, Paulus K, Adams M, Rauh R, Boechzelt H, Hao X, Kaina B, Bauer R (2008a) Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells. Mol Cancer Ther 7:152–161

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008b) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  CAS  PubMed  Google Scholar 

  • Fafowora MV, Atanu F, Sanya O, Olorunsogo OO, Erukainure OL (2011) Effect of oral coadministration of artesunate with ferrous sulfate on rat liver mitochondrial membrane permeability transition. Drug Chem Toxicol 34:318–323

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2010) Mitochondrial gateways to cancer. Mol Aspects Med 31:1–20

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith KC, Hogarty MD (2009) Small-molecule BH3 mimetics to antagonize Bcl-2-homolog survival functions in cancer. Curr Opin Investig Drugs 10:559–571

    PubMed  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem 286:6587–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handrick R, Ontikatze T, Bauer KD, Freier F, Rübel A, Dürig J, Belka C, Jendrossek V (2010) Dihydroartemisinin induces apoptosis by a Bak-dependent intrinsic pathway. Mol Cancer Ther 9:2497–2510

    Article  CAS  PubMed  Google Scholar 

  • Hockenbery DM (2010) Targeting mitochondria for cancer therapy. Environ Mol Mutagen 51:476–489

    Article  CAS  PubMed  Google Scholar 

  • Horwedel C, Tsogoeva SB, Wei S, Efferth T (2010) Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem 53:4842–4848

    Article  CAS  PubMed  Google Scholar 

  • Hunter AM, LaCasse EC, Korneluk RG (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12:1543–1568

    Article  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  CAS  PubMed  Google Scholar 

  • Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    Article  CAS  PubMed  Google Scholar 

  • Jansen FH, Adoubi I, KC JC, DE Cnodder T, Jansen N, Tschulakow A, Efferth T (2011) First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res 31:4417–4422

    CAS  PubMed  Google Scholar 

  • Jiang JB, Jacobs G, Liang DS, Aikawa M (1985) Qinghaosu-induced changes in the morphology of Plasmodium inui. Am J Trop Med Hyg 34:424–428

    CAS  PubMed  Google Scholar 

  • Kelter G, Steinbach D, Konkimalla VB, Tahara T, Taketani S, Fiebig HH, Efferth T (2007) Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate. PLoS One 2:e798

    Article  PubMed  PubMed Central  Google Scholar 

  • Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, Posner GH, Bauer R, Efferth T (2008) Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konkimalla VB, McCubrey JA, Efferth T (2009) The role of downstream signaling pathways of the epidermal growth factor receptor for Artesunate’s activity in cancer cells. Curr Cancer Drug Targets 9:72–80

    Article  CAS  PubMed  Google Scholar 

  • Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P (1999) Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30:636–642

    CAS  PubMed  Google Scholar 

  • Lai H, Sasaki T, Singh NP, Messay A (2005) Effects of artemisinin-tagged holotransferrin on cancer cells. Life Sci 76:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Li PC, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T (2008) Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res 68:4347–4351

    Article  CAS  PubMed  Google Scholar 

  • Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB (2009) Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci 16:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu JJ, Yang Z, Lu DZ, Wo XD, Shi JJ, Lin TQ, Wang MM, Li Y, Tang LH (2012) Dihydroartemisinin-induced inhibition of proliferation in BEL-7402 cells: an analysis of the mitochondrial proteome. Mol Med Report 6:429–433

    CAS  Google Scholar 

  • Maeno Y, Toyoshima T, Fujioka H, Ito Y, Meshnick SR, Benakis A, Milhous WK, Aikawa M (1993) Morphologic effects of artemisinin in Plasmodium falciparum. Am J Trop Med Hyg 49:485–491

    CAS  PubMed  Google Scholar 

  • Mercer AE, Copple IM, Maggs JL, O’Neill PM, Park BK (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286:987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay EE, Hogg PJ, Dilda PJ (2011) Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 28:2731–2744

    Article  CAS  PubMed  Google Scholar 

  • Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25:1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro IR, Olliaro P (1998) Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials. Med Trop (Mars) 58:50–53

    CAS  Google Scholar 

  • Schmuck G, Roehrdanz E, Haynes RK, Kahl R (2002) Neurotoxic mode of action of artemisinin. Antimicrob Agents Chemother 46:821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sertel S, Eichhorn T, Sieber S, Sauer A, Weiss J, Plinkert PK, Efferth T (2010a) Factors determining sensitivity or resistance of tumor cell lines towards artesunate. Chem Biol Interact 185:42–52

    Article  CAS  PubMed  Google Scholar 

  • Sertel S, Eichhorn T, Simon CH, Plinkert PK, Johnson SW, Efferth T (2010b) Microarray-based mRNA expression profiling of genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines. Molecules 15:2886–2910

    Article  CAS  PubMed  Google Scholar 

  • Sieber S, Gdynia G, Roth W, Bonavida B, Efferth T (2009) Combination treatment of malignant B cells using the anti-CD20 antibody rituximab and the anti-malarial artesunate. Int J Oncol 35:149–158

    CAS  PubMed  Google Scholar 

  • Singh NP, Lai H (2001) Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci 70:49–56

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeev E, Vucic D (2011) Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncol 7:633–648

    Article  CAS  PubMed  Google Scholar 

  • Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16:360–367

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinhouse S (1976) The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 87:115–126

    Article  CAS  PubMed  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227:450–456

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Yan B (2011) Discovery of small molecules that target autophagy for cancer treatment. Curr Med Chem 18:1866–1873

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Gao W, Wang X, Chen T (2012) Amplification activation loop between caspase-8 and -9 dominates artemisinin-induced apoptosis of ASTC-a-1 cells. Apoptosis 17:600–611

    Article  CAS  PubMed  Google Scholar 

  • Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavaré S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang E, Zhang C, Su Y, Cheng T, Shi C (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140–146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Efferth, T. (2014). Activation of Mitochondria-Driven Pathways by Artemisinin and Its Derivatives. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_6

Download citation

Publish with us

Policies and ethics