Skip to main content

Mitochondrion: A Novel Center for Cancer Cell Signaling

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium

Abstract

Genomic alterations of normal host cells contribute to the development of cancer. Recent cancer research studies have shown that the aggressive growth and metastasis of cancer cells depend on normal host cells such as fibroblasts, endothelial, mesenchymal and immune cells. Balance among this cellular crosstalk determines the natural history of the cancer and its response to therapy. This active tumor-host dynamic mutualism is referred to as a tumor microenvironment, which can be a key target for both cancer prevention and therapy. An important common feature of various host cells and cancer cells is the generation of reactive oxygen species (ROS) that contribute to the effect of the microenvironment. Mitochondria play a central role in the regulation of ROS production and removal. A shift in cell redox status toward an oxidizing condition activates mitochondrial retrograde signaling, a communication pathway from mitochondria to the nucleus that leads to activation of adaptive response or cell death. Thus, in addition to generating ATP, mitochondria, the powerhouse of cells, play an important role in cell signaling in life-and-death conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495

    CAS  PubMed  Google Scholar 

  • Afford S, Randhawa S (2000) Demystified…Apoptosis. Mol Pathol 53:55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7:192–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akhand AA, Pu M, Senga T, Kato M, Suzuki H, Miyata T, Hamaguchi M, Nakashima I (1999) Nitrix oxide controls Src kinase activity through sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274:25821–25826

    CAS  PubMed  Google Scholar 

  • Albracht SPJ (1980) The prosthetic groups in succinate dehydrogenase number and stoichiometry. Biochim Biophys Acta 612:11–28

    CAS  PubMed  Google Scholar 

  • Albracht SPJ, Subramanian J (1977) The number of Fe atoms in the iron-sulfur centers of the respiratory chain. Biochim Biophys Acta 462:36–48

    CAS  PubMed  Google Scholar 

  • Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aluise CD, Miriyala S, Noel T, Sultana R, Jungsuwadee P, Taylor TJ, Cai J, Pierce WM, Vore M, Moscow JA, St Clair DK, Butterfield DA (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50:1630–1638

    CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Aranda A, Martinez-Iglesias O, Ruiz-Llorente L, Garcia-Carpizo V, Zambrano A (2009) Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20:318–324

    CAS  PubMed  Google Scholar 

  • Arnold S, Beyer C (2009) Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 110:1–11

    CAS  PubMed  Google Scholar 

  • Augereau O, Claverol S, Boudes N, Basurko M-J, Bonneu M, Rossignol R, Mazat J-P, Letellier T, Dachary-Prigent J (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62:1478–1488

    CAS  PubMed  Google Scholar 

  • Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK (2012) Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polg against UV-induced inactivation. Oncogene 31:2129–2139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 in brain tumors. Acta Neuropathol 116:597–602

    CAS  PubMed  Google Scholar 

  • Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB (2010) T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron 3:29–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10:249–260

    PubMed  Google Scholar 

  • Basu A, Castle VP, Bouziane M, Bhalla K, Haldar S (2006) Crosstalk between extrinsic and intrainsic cell death pathways in pancreatic cancer: synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Res 66:4309–4318

    CAS  PubMed  Google Scholar 

  • Baysal BE (2007) A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS One 5:e436

    Google Scholar 

  • Baysal BE, Ferrell RE, Willet-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PEM, Rubinstein WS, Myers EN, Richard CW III, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Birch-Machin MA, Swalwell H (2010) How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue. Mutagenesis 25:101–107

    CAS  PubMed  Google Scholar 

  • Blanchet E, Bertrand C, Annicotte JS, Schlernitzauer A, Pessemesse L, Levin J, Fouret G, Feillet-Coudray C, Bonafos B, Fajas L, Cabello G, Wrutniak-Cabello C, Casas F (2012) Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J 26:40–50

    CAS  PubMed  Google Scholar 

  • Block K, Eid A, Griendling KK, Lee D-Y, Wittrant Y, Gorin Y (2008) Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression. J Biol Chem 283:24061–24076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106:14385–14390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    CAS  PubMed  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    CAS  PubMed  Google Scholar 

  • Briere J-J, Favier J, Gimenez-Roqueplo A-P, Rustin P (2006) Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am J Physiol Cell Physiol 291:C1114–C1120

    CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    CAS  PubMed  Google Scholar 

  • Brown MS, Stemmer SM, Simon JH, Stears JC, Jones RB, Cagnoni PJ, Sheeder JL (1998) White matter disease induced by high-dose chemotherapy: longitudinal study with MR imaging and proton spectroscopy. AJNR Am J Neuroradiol 19:217–221

    CAS  PubMed  Google Scholar 

  • Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim K-Y, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cammarota M, Paratcha G, Bevilaqua LRM, de Stein ML, Lopez M, de Iraldi AP, Izquierdo I, Medina JH (1999) Cyclic AMP responsive element binding protein in brain mitochondria. J Neurochem 72:2272–2277

    CAS  PubMed  Google Scholar 

  • Cardone L, Carlucci A, Affaitati A, Livigni A, deCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A (2004) Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol Cell Biol 24:4613–4626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casas F, Rochard P, Rodier A, Cassar-Malek I, Marchal-Victorion S, Wiesner RJ, Cabello G, Wrutniak C (1999) A variant form of the nuclear triiodothyronine receptor c-ErbAa1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19:7913–7924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casas F, Domenjoud L, Rochard P, Hatier R, Rodier A, Daury L, Bianchi A, Kremarik-Bouillaud P, Becuwe P, Keller J-M, Schohn H, Wrutniak-Cabello C, Cabello G, Dauca M (2000) A 45 kDa protein related to PPARγ2 induced by peroxisome proliferators, is located in the mitochondrial matrix. FEBS Lett 478:4–8

    CAS  PubMed  Google Scholar 

  • Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, Gueguen N, Ramonatxo C, Perrin F, Fouret G, Lepourry L, Cabello G, Wrutniak-Cabello C (2009) Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 4:e5631

    PubMed Central  PubMed  Google Scholar 

  • Case AJ, McGill JL, Tygrett LT, Shirasawa T, Spitz DR, Waldschmidt TJ, Legge KL, Domann FE (2011) Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune response to an influenza challenge. Free Radic Biol Med 50:448–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cervera AM, Apostolova N, Crespo FL, Mata M, McCreath KJ (2008) Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res 68:4058–4067

    CAS  PubMed  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriquez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia. A mechanism of O2 sensing. J Biol Chem 275:25130–25138

    CAS  PubMed  Google Scholar 

  • Chatelain EH, Dupuy J-W, Letellier T, Dachary-Prigent J (2011) Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria. Cell Mol Life Sci 68:2603–2613

    Google Scholar 

  • Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825

    CAS  PubMed  Google Scholar 

  • Chen JQ, Eshete M, Alworth WL, Yager JD (2004a) Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors a and b to human mitochondrial DNA estrogen response elements. J Cell Biochem 93:358–373

    CAS  PubMed  Google Scholar 

  • Chen JZ, Delannoy M, Cooke C, Yager JD (2004b) Mitochondrial localization of ERα and ERβ in human MCF7 cells. Am J Physiol Endocrinol Metab 286:E1011–E1022

    CAS  PubMed  Google Scholar 

  • Chen Y-R, Chen C-L, Zhang L, Green-Church KB, Zweier JL (2005) Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J Biol Chem 280:37339–37348

    CAS  PubMed  Google Scholar 

  • Cheng S-Y (2003) Thyroid hormone receptor mutations in cancer. Mol Cell Endocrinol 213:23–30

    CAS  PubMed  Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    CAS  PubMed  Google Scholar 

  • Chinta SJ, Andersen JK (2011) Nitrosylation and nitration of mitochondrial complex I in Parkinson’s disease. Free Radic Res 45:53–58

    CAS  PubMed  Google Scholar 

  • Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU (2012) Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol 5:5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christianson DW (1997) Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Biol 67:217–252

    CAS  PubMed  Google Scholar 

  • Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1α occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chueh F-Y, Leong K-F, Yu C-L (2010) Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 402:778–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A 90:3113–3117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cinel I, Opal SM (2009) Molecular biology of inflammation and sepsis: a primer. Crit Care Med 37:291–304

    CAS  PubMed  Google Scholar 

  • Consortium TML (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Google Scholar 

  • Cortopassi G, Wang E (1995) Modelling the effects of age-related mtDNA mutation accumulation; Complex I deficiency, superoxide and cell death. Biochim Biophys Acta 1271:171–176

    PubMed  Google Scholar 

  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daosukho C, Kiningham K, Kasarskis EJ, Ittarat W, St Clair DK (2002) Tamoxifen enhancement of TNF-α induced MnSOD expression: modulation of NF-κB dimerization. Oncogene 21:3603–3610

    CAS  PubMed  Google Scholar 

  • Daosukho C, Ittarat W, S-M L, Sawyer DB, Kiningham K, Lien Y-C, St Clair DK (2005) Induction of manganese superoxide dismutase (MnSOD) mediates cardioprotective effect of tamoxifen (TAM). J Mol Cell Cardiol 39:792–803

    CAS  PubMed  Google Scholar 

  • Dasgupta J, Subbaram S, Connor KM, Rodriguez AM, Tirosh O, Beckman JS, Jourd’Heuil D, Melendez JA (2006) Manganese superoxide dismutase protects from TNF-α-induced apoptosis by increasing the steady-state production of H2O2. Antioxid Redox Signal 8:1295–1305

    CAS  PubMed  Google Scholar 

  • De Rasmo D, Signorile A, Roca E, Papa S (2009) cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 276:4325–4333

    PubMed  Google Scholar 

  • Demonacos CV, Karayanni N, Hatzoglou E, Tsiriyiotis C, Spandidos DA, Sekeris CE (1996) Mitochondrial genes as sites of primary action of steroid hormones. Steroids 61:226–232

    CAS  PubMed  Google Scholar 

  • Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O (2008) Metabolite profiling of human colon carcinoma-deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72

    PubMed Central  PubMed  Google Scholar 

  • Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK (2011) Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res 71:6684–6695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dostert C, Petrilli V, van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du J, McEwen B, Manji HK (2009) Glucocorticoid receptors modulate mitochondrial function: a novel mechanism for neuroprotection. Commun Integr Biol 2:350–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duttaroy A, Paul A, Kundu M, Belton A (2003) A Sod2 null mutation confers severely reduced adult life span in drosophila. Genetics 165:2295–2299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epperly MW, Bray JA, Esocobar P, Bigbee WL, Watkins S, Greenberger JS (1999) Overexpression of the human manganese superoxide dismutase (MnSOD) transgene in subclones of murine hematopoietic progenitor cell line 32D cl 3 decreases irradiation-induced apoptosis but does not alter G2/M or G1/S phase cell cycle arrest. Radiat Oncol Investig 7:331–342

    CAS  PubMed  Google Scholar 

  • Epperly MW, Sikora CA, DeFilippi SJ, Gretton JE, Zhan Q, Kufe DW, Greenberger JS (2002) Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 157:568–577

    CAS  PubMed  Google Scholar 

  • Epperly MW, Bernarding M, Gretton J, Jefferson M, Nie S, Greenberger JS (2003) Overexpression of the transgene for manganese superoxide dismutase (MnSOD) in 32D cl 3 cells prevents apoptosis induction by TNF-α, IL-3 withdrawal, and ionizing radiation. Exp Hematol 31:465–474

    CAS  PubMed  Google Scholar 

  • Epperly MW, Carpenter M, Agarwal A, Mitra P, Nie S, Greenberger JS (2004) Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 18:401–410

    CAS  PubMed  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  PubMed  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH: ubiquinone oxidoreductase (complex I). J Biol Chem 276:28245–38348

    Google Scholar 

  • Fijalkowska I, Xu W, Comhair SAA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-inducible factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flynn JM, Dimitrijevich SD, Younes M, Skliris G, Murphy LC, Cammarata PR (2008) Role of wild-type estrogen receptor-β in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. Am J Physiol Endocrinol Metab 295:E637–E647

    CAS  PubMed  Google Scholar 

  • Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89:213–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2010) Mitochondrial gateways to cancer. Mol Aspects Med 31:1–20

    CAS  PubMed  Google Scholar 

  • Garcia-Ramirez M, Francisco G, Garcia-Arumi E, Hernandez C, Martinez R, Andreu AL, Simo R (2008) Mitochondrial DNA oxidation and manganese superoxide dismutase activity in peripheral blood mononuclear cells fro type 2 diabetic patients. Diabetes Metab 34:117–124

    CAS  PubMed  Google Scholar 

  • Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270:13399–13405

    CAS  PubMed  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583–1596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavrilova-Jordan LP, Price TM (2007) Actions of steroids in mitochondria. Semin Reprod Med 25:154–164

    CAS  PubMed  Google Scholar 

  • Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25:6391–6403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giannoni E, Taddei ML, Chiarugi P (2010) Src redox regulation: again in the front line. Free Radic Biol Med 49:516–527

    CAS  PubMed  Google Scholar 

  • Gius D, Spitz DR (2006) Redox signaling in cancer biology. Antioxid Redox Signal 8:1249–1252

    CAS  PubMed  Google Scholar 

  • Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A 92:8115–8119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10:1–9

    Google Scholar 

  • Grandemange S, Seyer P, Carazo A, Becuwe P, Pessemesse L, Busson M, Marsac C, Roger P, Casas F, Cabello G, Wrutniak-Cabello C (2005) Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 65:4282–4291

    CAS  PubMed  Google Scholar 

  • Graziewicz MA, Day BJ, Copeland WC (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 30:2817–2824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  PubMed  Google Scholar 

  • Gregory EM, Fridovich I (1973) Oxygen toxicity and the superoxide dismutase. J Bacteriol 114:1193–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223:14–26

    CAS  PubMed  Google Scholar 

  • Gulbins E, Dreschers S, Bock J (2003) Role of mitochondria in apoptosis. Exp Physiol 88:85–90

    CAS  PubMed  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    CAS  PubMed  Google Scholar 

  • Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hebert-Chatelain E, Jose C, Cortex NG, Dupuy J-W, Rocher C, Dachary-Prigent J, Letellier T (2012) Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochim Biophys Acta 1817:718–725

    CAS  PubMed  Google Scholar 

  • Hervouet E, Simonnet H, Godinot C (2007) Mitochondria and reactive oxygen species in renal cancer. Biochimie 89:1080–1088

    CAS  PubMed  Google Scholar 

  • Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ishcemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308

    CAS  PubMed  Google Scholar 

  • Hirose K, Longo DI, Oppenheim JJ, Matsushima K (1993) Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J 7:361–368

    CAS  PubMed  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    CAS  PubMed  Google Scholar 

  • Hu H, Luo ML, Du XL, Feng YB, Zhang Y, Shen XM, Xu X, Cai Y, Han YL, Wang MR (2007) Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas. Chin Med J 120:2092–2098

    CAS  PubMed  Google Scholar 

  • Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC (2004) p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64:2350–2356

    CAS  PubMed  Google Scholar 

  • Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9–22

    PubMed Central  PubMed  Google Scholar 

  • Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DTW, Collins VP (2009) IDH mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inagaki M, Yoshikawa E, Matsuoka Y, Sugawara Y, Nakano T, Akechi T, Wada N, Imoto S, Murakami K, Uchitomi Y (2007) Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer 109:146–156

    PubMed  Google Scholar 

  • Indo HP, Davidson M, Yen H-C, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J-I (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    CAS  PubMed  Google Scholar 

  • Itoh S, Lemay S, Osawa M, Che W, Duan Y, Tompkins A, Brookes PS, Sheu S-S, Abe JI (2005) Mitochondrial Dok-4 recruits Src kinase and regulates NF-kB activation in endothelial cells. J Biol Chem 280:26383–26396

    CAS  PubMed  Google Scholar 

  • Ivanova MM, Mazhawidza W, Dougherty SM, Klinge CM (2010) Sex differences in estrogen receptor subcellular location and activity in lung adenocarcinoma cells. Am J Respir Cell Mol Biol 42:320–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izawa S, Kono K, Mimura K, Kawaguchi Y, Watanabe M, Maruyama T, Fujii H (2011) H2O2 production within tumor microenvironment inversely correlated with infiltration of CD56(dim) NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol Immunother 60:1801–1810

    CAS  PubMed  Google Scholar 

  • Jandova J, Shi M, Norman KG, Stricklin GP, Sligh JE (2012) Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype. Biochim Biophys Acta 1822:293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaramillo MC, Frye JB, Crapo JD, Briehl MM, Tome ME (2009) Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res 69:5450–5457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings GT, Minard KI, McAlister-Henn L (1997) Expression and mutagenesis of mammalian cytosolic NADP +− specific isocitrate dehydrogenase. Biochemistry 36:13743–13747

    CAS  PubMed  Google Scholar 

  • Jiang B-H, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    CAS  PubMed  Google Scholar 

  • Johnson FM, Gallick GE (2007) Src family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med Chem 7:651–659

    CAS  PubMed  Google Scholar 

  • Jones JL, Shaw JA, Pringle JH, Walker RA (2003) Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol 201:562–572

    CAS  PubMed  Google Scholar 

  • Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anticancer drug adriamycin: insight into chemobrain. Free Radic Res 29:1147–1154

    Google Scholar 

  • Kaewpila S, Venkataraman S, Buettner GR, Oberley LW (2008) Manganese superoxide dismutase modulates hypoxia-inducible factor-1a induction via superoxide. Cancer Res 68:2781–2788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahlos K, Soini Y, Paakko P, Saily M, Linnainmaa K, Kinnula VL (2000) Proliferation, apoptosis, and manganese superoxide dismutase in malignant mesothelioma. Int J Cancer 88:37–43

    CAS  PubMed  Google Scholar 

  • Kang D, Hamasaki N (2005) Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 12:429–441

    CAS  PubMed  Google Scholar 

  • Kang YJ, Sun X, Chen Y, Zhou Z (2002) Inhibition of doxorubicin chronic toxicity in catalase-overexpressing transgenic mouse hearts. Chem Res Toxicol 15:1–6

    PubMed  Google Scholar 

  • Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    CAS  PubMed  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen H-C, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    CAS  PubMed  Google Scholar 

  • Kemble DJ, Sun G (2009) Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci U S A 106:5070–5075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kienhofer J, Haussler DJF, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Burkle A, Bachschmid MM (2009) Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 23:2034–2044

    PubMed Central  PubMed  Google Scholar 

  • Kiningham KK, Oberley TD, Lin S-M, Mattingly CA, St Clair DK (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 13:1601–1610

    CAS  PubMed  Google Scholar 

  • Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660–666

    CAS  PubMed  Google Scholar 

  • Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, Myliyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532

    CAS  PubMed  Google Scholar 

  • Koufali M-M, Moutsatsou P, Sekeris CE, Breen KC (2003) The dynamic localization of the glucocorticoid receptor in rat C6 glioma cell mitochondria. Mol Cell Endocrinol 209:51–60

    CAS  PubMed  Google Scholar 

  • Krasnowska EK, Pittaluga E, Brunati AM, Brunelli R, Costa G, De Spirito M, Serafino A, Ursini F, Parasassi T (2008) N-acetyl-l-cysteine fosters inactivation and transfer to endolysosomes of c-Src. Free Radic Biol Med 45:1566–1572

    CAS  PubMed  Google Scholar 

  • Larosche I, Letteron P, Berson A, Fromenty B, Huang T-T, Moreau R, Pessayre D, Mansouri A (2010) Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase. J Pharmacol Exp Ther 332:886–897

    CAS  PubMed  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93:9782–9787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H (2008) Mitochondrial nuclear receptors and transcription factors: who’s minding the cell? J Neurosci Res 86:961–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S-M, Lee Y-S, Choi J-H, Park S-G, Choi I-W, Joo Y-D, Lee W-S, Lee J-N, Choi I, Seo S-K (2010) Tryptophan metabolite 3-hydroxyanthranilic acid selectively induces activated T cell death via intracellular GSH depletion. Immunol Lett 132:53–60

    CAS  PubMed  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117:2653–2662

    CAS  PubMed  Google Scholar 

  • Lehtonen HJ, Kiuru M, Ylisaukko-oja SK, Salovaara R, Herva R, Koivisto PA, Vierimaa O, Aittomaki K, Pukkala E, Launonen V, Aaltonen LA (2006) Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43:523–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leigh-Brown S, Enriquez JA, Odom DT (2010) Nuclear transcription factors in mammalian mitochondria. Genome Biol 11:215

    PubMed Central  PubMed  Google Scholar 

  • Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD (1995a) Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 10:1989–2000

    CAS  PubMed  Google Scholar 

  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995b) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    CAS  PubMed  Google Scholar 

  • Li R, Luciakova K, Zaid A, Betina S, Fridell E, Nelson BD (1997) Thyroid hormone activates transcription from the promoter regions of some human nuclear-encoded genes of the oxidative phosphorylation system. Mol Cell Endocrinol 128:69–75

    CAS  PubMed  Google Scholar 

  • Livigni A, Scorziello A, Agnese S, Adornetto A, Carlucci A, Garbi C, Castaldo I, Annunziato L, Avvedimento EV, Feliciello A (2006) Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol Biol Cell 17:263–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC (2007) Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-κB via c-SRC- and oxidant-dependent cell death. Cancer Res 67:7368–7377

    CAS  PubMed  Google Scholar 

  • Longo VD, Liou L-L, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142

    CAS  PubMed  Google Scholar 

  • Lu S-P, Feng M-HL, Huang H-L, Huang Y-C, Tsou W-I, Lai M-Z (2007) Reactive oxygen species promote raft formation in T lymphocytes. Free Radic Biol Med 42:936–944

    CAS  PubMed  Google Scholar 

  • Lu J, Sharma LK, Bai Y (2009) Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 19:802–815

    CAS  PubMed  Google Scholar 

  • Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, Cao X (2003) GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 22:1325–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madsen-Bouterse SA, Zhong Q, Mohammad G, Ho Y-S, Kowluru RA (2010) Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res 44:313–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D (2003) Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homplasmic mutations. Proc Natl Acad Sci 100:1838–1843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mansouri A, Tarhuni A, Larosche I, Reyl-Desmars F, Demeilliers C, Degoul F, Nahon P, Sutton A, Moreau R, Fromenty B, Ressayre D (2010) MnSOD overexpression prevents liver mitochondrial DNA depletion after an alcohol binge but worsens this effect after prolonged alcohol consumption in mice. Dig Dis 28:756–775

    PubMed  Google Scholar 

  • Martin FM, Xu X, von Lohneysen K, Gilmartin TJ, Friedman J (2011) SOD2 deficient erythroid cells up-regulate transferrin receptor and down-regulate mitochondrial biogenesis and metabolism. PLoS One 6:e16894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Mir A, Glaser B, Chuang GS, Horev L, Waldman A, Engler DE, Gordon D, Spelman LJ, Hatzibougias I, Green J, Christiano AM, Zlotogorski A (2003) Germline fumarate hydratase mutations in families with multiple cutaneous and uterine leiomyomata. J Invest Dermatol 121:741–744

    CAS  PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010a) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F (2010b) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433

    CAS  PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP (2011) Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 10:2504–2520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616–619

    CAS  PubMed  Google Scholar 

  • Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    CAS  PubMed  Google Scholar 

  • Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-κB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697

    CAS  PubMed  Google Scholar 

  • McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344

    CAS  PubMed  Google Scholar 

  • Meissner F, Seger RA, Moshous S, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116:1570–1573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milanesi L, de Boland AR, Boland R (2008) Expression and localization of estrogen receptor a in the C2C12 murine skeletal muscle cell line. J Cell Biochem 104:1254–1273

    CAS  PubMed  Google Scholar 

  • Milanesi L, Vasconsuelo A, de Boland AR, Boland R (2009) Expression and subcellular distribution of native estrogen receptor b in murine C2C12 cells and skeletal muscle tissue. Steroids 74:489–497

    CAS  PubMed  Google Scholar 

  • Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE (2005) Ultrastructural localization of estrogen receptor b immunoreactivity in the rat hippocampal formation. J Comp Neurol 491:81–95

    CAS  PubMed  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Tanaka S, Sanjay A, Baron R (2006) The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol 16:68–74

    CAS  PubMed  Google Scholar 

  • Mohr A, Buneker C, Gough RP, Zwacka RM (2007) MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27:763–774

    PubMed  Google Scholar 

  • Moreira PI, Custodio J, Moreno A, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281:10143–10152

    CAS  PubMed  Google Scholar 

  • Morgan MJ, Lehmann M, Schwarzlander M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TCR, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I (2008) Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol 147:101–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulian N, Truffault F, Gaudry-Talarmain YM, Serraf A, Berrih-Aknin S (2008) In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood 97:3521–3530

    Google Scholar 

  • Moutsatsou P, Psarra AMG, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE (2001) Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 386:69–78

    CAS  PubMed  Google Scholar 

  • Nakahira K, Hapsel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AMK (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 8:222–230

    Google Scholar 

  • Nelson BD, Luciakova K, Li R, Betina S (1995) The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochodnrial proteins. Biochim Biophys Acta 1271:85–91

    PubMed  Google Scholar 

  • Nelson CJ, Nandy N, Roth AJ (2007) Chemotherapy and cognitive deficits: mechanisms, findings, and potential interventions. Palliat Support Care 5:273–280

    PubMed  Google Scholar 

  • Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, Platzer P, Orloff MS, Waite KA, Eng C (2008) Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet 83:261–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norberg E, Gogvadze V, Vakifahmetoglu H, Orrenius S, Zhivotovsky B (2010) Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radic Biol Med 48:791–797

    CAS  PubMed  Google Scholar 

  • Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    CAS  PubMed  Google Scholar 

  • Ogita K, Okuda H, Kitano M, Fujinami Y, Ozaki K, Yoneda Y (2002) Localization of activator protein-1 complex with DNA binding activity in mitochondria of murine brain after in vivo treatment with kainate. J Neurosci 22:2561–2570

    CAS  PubMed  Google Scholar 

  • Ogita K, Fujinami Y, Kitano M, Yoneda Y (2003) Transcription factor activator protein-1 expressed by kainate treatment can bind to the non-coding region of mitochondrial genome in murine hippocampus. J Neurosci Res 73:794–802

    CAS  PubMed  Google Scholar 

  • Ohnishi T (1975) Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart. Biochim Biophys Acta 387:475–490

    CAS  PubMed  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Owens KM, Kulawiec M, Desouki MM, Vanniarajan A, Singh KK (2011) Impaired OXPHOS complex III in breast cancer. PLoS One 6:e23846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541

    CAS  PubMed  Google Scholar 

  • Palazzotti B, Pani G, Colavitti R, de Leo ME, Bedogni B, Borrello S, Galeotti T (1999) Increased growth capacity of cervical-carcinoma cells over-expressing manganous superoxide dismutase. Int J Cancer 82:145–150

    CAS  PubMed  Google Scholar 

  • Pandey PR, Saidou J, Watabe K (2010) Role of myoepithelial cells in breast tumor progression. Front Biosci 15:226–236

    CAS  Google Scholar 

  • Pardo M, Melendez JA, Tirosh O (2006) Manganese superoxide dismutase inactivation during Fas (CD95)-mediated apoptosis in Jurkat T cells. Free Radic Biol Med 41:1795–1806

    CAS  PubMed  Google Scholar 

  • Parkash J, Felty Q, Roy D (2006) Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry 45:2872–2881

    CAS  PubMed  Google Scholar 

  • Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce LL, Epperly MW, Greenberger JS, Pitt BR, Peterson J (2001) Identification of respiratory complexes I and III as mitochondrial sites of damage following exposure to ionizing radiation and nitric oxide. Nitric Oxide Biol Chem 5:128–136

    CAS  Google Scholar 

  • Pessemesse L, Schlernitzauer A, Sar C, Levin J, Grandemange S, Seyer P, Favier FB, Kaminski S, Cabello G, Wrutniak-Cabello C, Casas F (2012) Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB J 26:748–756

    CAS  PubMed  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci 102:719–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    CAS  PubMed  Google Scholar 

  • Pope S, Land JM, Heales SJ (2008) Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target? Biochim Biophys Acta 1777:794–799

    CAS  PubMed  Google Scholar 

  • Powell CS, Jackson RM (2003) Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am J Physiol Lung Cell Mol Physiol 285:L189–L198

    CAS  PubMed  Google Scholar 

  • Ravindranath SD, Fridovich I (1975) Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J Biol Chem 250:6107–6112

    CAS  PubMed  Google Scholar 

  • Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roessler MM, King MS, Aj R, Armstrong FA, Harmer J, Hirst J (2010) Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex i by double electron-electron resonance. Proc Natl Acad Sci U S A 107:1930–1935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roszkowski K, Jozwicki W, Blaszczyk P, Mucha-Malecka A, Siomek A (2011) Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med Sci Monit 17:CR329–CR333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    CAS  PubMed  Google Scholar 

  • Roy S, Nicholson DW (2000) Cross-talk in cell death signaling. J Exp Med 192:F21–F25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu H, Lee J, Impey S, Ratan RR, Ferrante RJ (2005) Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci U S A 102:13915–13920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saltzman HA, Fridovich I (1973) Editorial: oxygen toxicity. Introduction to a protective enzyme: superoxide dismutase. Circulation 48:921–923

    CAS  PubMed  Google Scholar 

  • Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 1589:181–195

    CAS  PubMed  Google Scholar 

  • Sarvazyan N (1996) Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol Heart Circ Physiol 271:H2079–H2085

    CAS  Google Scholar 

  • Sasabe E, Yang Z, Ohno S, Yamamoto T (2010) Reactive oxygen species produced by the knockdown of manganese-superoxide dismutase up-regulate hypoxia-inducible factor-1α expression in oral squamous cell carcinoma cells. Free Radic Biol Med 48:1321–1329

    CAS  PubMed  Google Scholar 

  • Sato H, Sato M, Kanai H, Uchiyama T, Iso T, Ohyama Y, Sakamoto H, Tamura J, Nagai R, Kurabayashi M (2005) Mitochondrial reactive oxygen species and c-Src play a critical role in hypoxic response in vascular smooth muscle cells. Cardiovasc Res 67:714–722

    CAS  PubMed  Google Scholar 

  • Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, Dieu-Nosjean MC (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30:13–25

    PubMed  Google Scholar 

  • Scheller K, Sekeris CE, Krohne G, Hock R, Hansen IA, Scheer U (2000) Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol 79:299–307

    CAS  PubMed  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    CAS  PubMed  Google Scholar 

  • Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14:133–151

    CAS  PubMed  Google Scholar 

  • Sekeris CE (1990) The mitochondrial genome: a possible primary site of action of steroid hormones. In Vivo 4:317–320

    CAS  PubMed  Google Scholar 

  • Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85

    CAS  PubMed  Google Scholar 

  • Seth RB, Sun L, Ea C-K, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669–682

    CAS  PubMed  Google Scholar 

  • Sharma LK, Fang H, Liu J, Vartak R, Deng JJ, Bai Y (2011) Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 20:4605–4616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen L, Fang H, Chen T, He J, Zhang M, Wei X, Xin Y, Jiang Y, Ding Z, Ji J, Lu J, Bai Y (2010) Evaluating mitochondrial DNA in cancer occurrence and development. Ann N Y Acad Sci 1201:26–33

    CAS  PubMed  Google Scholar 

  • Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, S-i O, Yodoi J (2002) Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409

    CAS  PubMed  Google Scholar 

  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102:5618–5623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sidiropoulos PI, Goulielmos G, Voloudakis GK, Petraki E, Boumpas DT (2008) Inflammasomes and rheumatic diseases: evolving concepts. Ann Rheum Dis 67:1382–1389

    CAS  PubMed  Google Scholar 

  • Silverman DHS, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, Waddell K, Petersen L, Phelps ME, Ganz PA (2007) Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat 103:303–311

    CAS  PubMed  Google Scholar 

  • Simbre VC II, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE (2005) Cardiotoxicity of cancer chemotherapy. Implications for children. Pediatr Drugs 7:187–202

    Google Scholar 

  • Sinha RA, Pathak A, Mohan V, Babu S, Pal A, Khare D, Godbole MM (2010) Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development. Biochem Biophys Res Commun 397:548–552

    CAS  PubMed  Google Scholar 

  • Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E (2006a) Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med 203:189–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sionov RV, Kfir S, Zafrir E, Cohen O, Zilberman Y, Yefenof E (2006b) Glucocorticoid-induced apoptosis revisited: a novel role for glucocorticoid receptor translocation to the mitochondria. Cell Cycle 5:1017–1026

    CAS  PubMed  Google Scholar 

  • Solakidi S, Psarra AMG, Nikolaropoulos S, Sekeris CE (2005a) Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: localization of ERβ and AR in mitochondria of the midpiece. Hum Reprod 20:3481–3487

    CAS  PubMed  Google Scholar 

  • Solakidi S, Psarra AMG, Sekeris CE (2005b) Differential subcellular distribution of estrogen receptor isoforms: localization of ERα in the nucleoli and ERβ in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines. Biochim Biophys Acta 1745:382–392

    CAS  PubMed  Google Scholar 

  • Solakidi S, Psarra AMG, Sekeris CE (2007) Differential distribution of glucocorticoid and estrogen receptor isoforms: localization of GRβ and ERα in nucleoli and GRα and ERβ in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines. J Musculoskele Neuronal Interact 7:240–245

    CAS  Google Scholar 

  • Soundar S, Danek BL, Colman RF (2000) Identification by mutagenesis of arginines in the substrate binding site of the porcine NADP-dependent isocitrate dehydrogenase. J Biol Chem 275:5606–5612

    CAS  PubMed  Google Scholar 

  • Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67

    CAS  PubMed  Google Scholar 

  • Stclair D, Wan X, Kuroda M, Vichitbandha S, Tsuchida E, Urano M (1997) Suppression of tumor metastasis by manganese superoxide dismutase is associated with reduced tumorigenicity and elevated fibronectin. Oncol Rep 4:753–757

    CAS  PubMed  Google Scholar 

  • Steinman HM, Weinstein L, Brenowitz M (1994) The manganese superoxide dismutase of Escherichia coli K-12 associates with DNA. J Biol Chem 269:28629–28634

    CAS  PubMed  Google Scholar 

  • Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965

    CAS  PubMed  Google Scholar 

  • Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22:337–358

    CAS  PubMed  Google Scholar 

  • Sun G, Kemble DJ (2009) To C or not to C: direct and indirect regulation of Src protein tyrosine kinase. Cell Cycle 8:2353–2355

    CAS  PubMed  Google Scholar 

  • Sun X, Zhou Z, Kang YJ (2001) Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res 61:3382–3387

    CAS  PubMed  Google Scholar 

  • Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, Cichy J, Kukreja RC, Dulak J, Lesnefsky EJ, Larner AC (2011) Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610–29620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taddei ML, Giannoni E, Raugei G, Scacco S, Sardanelli AM, Papa S, Chiarugi P (2012) Mitochondrial oxidative stress due to complex I dysfunction promotes fibroblast activation and melanoma cell invasiveness. J Signal Trans 2012:684592

    Google Scholar 

  • Takai D, Park S-H, Takada Y, Ichinose S, Kitagawa M, Akashi M (2006) UV-irradiation induces oxidative damage to mitochondrial DNA primarily through hydrogen peroxide: analysis of 8-oxodGuo by HPLC. Free Radic Res 40:1138–1148

    CAS  PubMed  Google Scholar 

  • Talaber G, Boldizsar F, Bartis D, Palinkas L, Szabo M, Berta G, Setalo G Jr, Nemeth P, Berki T (2009) Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int Immunol 21:1269–1276

    CAS  PubMed  Google Scholar 

  • Tanaka M, Kovalenko SA, Gong J-S, Borgeld H-JW, Katsumata K, Hayakawa M, Yoneda M, Ozawa T (1996) Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann N Y Acad Sci 102–111

    Google Scholar 

  • Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol Dis 23:127–139

    CAS  PubMed  Google Scholar 

  • Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St. Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 100:191–201

    CAS  PubMed  Google Scholar 

  • Tannock IF, Ahles TA, Ganz PA, van Dam FS (2004) Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol 22:2233–2239

    PubMed  Google Scholar 

  • Teintze M, Slaughter M, Weiss H, Neupert W (1982) Biogenesis of mitochondrial ubiquinol: cytochrome c reductase (cytochrome bc 1 complex). Precursor proteins and their transfer into mitochondria. J Biol Chem 257:10364–10371

    CAS  PubMed  Google Scholar 

  • Tobar N, Guerrero J, Smith PC, Martinez J (2010) NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br J Cancer 103:1040–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toro JR, Nickerson ML, Wei M-H, Warren MB, Glenn GM, Turner ML, Stewart L, Duray P, Tourre O, Sharma N, Choyke P, Stratton P, Merino M, Walther MM, Linehan WM, Schmidt LS, Zbar B (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP (2011) Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 11:383–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbano A, Lakshmanan U, Choo PH, Kwan JC, Ng PY, Guo K, Dhakshinamoorthy S, Porter A (2005) AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells. EMBO J 24:2815–2826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vahsen N, Cande C, Briere J-J, Benit P, Joza N, Larochette N, Mastroberardina PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Van Itallie CM (1990) Thyroid hormone and dexamethasone increase the levels of a messenger ribonucleic acid for a mitochondrially encoded subunit but not for a nuclear-encoded subunit of cytochrome c oxidase. Endocrinology 127:55–62

    PubMed  Google Scholar 

  • van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang T-T, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    PubMed  Google Scholar 

  • Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    CAS  PubMed  Google Scholar 

  • Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR, Oberley LW (2005) Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 24:8154–8166

    CAS  PubMed  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14–21

    PubMed Central  PubMed  Google Scholar 

  • Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wefel JS, Lenzi R, Theriault R, Buzdar AU, Cruickshank S, Meyers CA (2004) ‘Chemobrain’ in breast carcinoma?: a prologue. Cancer 101:466–475

    PubMed  Google Scholar 

  • Wegrzyn J, Potla R, Chwae Y-J, Sepuri NBV, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu X-Y, Avadhani NG, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Superoxide dismutase. Organelle specificity. J Biol Chem 248:3582–3592

    CAS  PubMed  Google Scholar 

  • Weitzel JM, Iwen KA (2011) Coordination of mitochondrial biogenesis by thyroid hormone. Mol Cell Endocrinol 342:1–7

    CAS  PubMed  Google Scholar 

  • Wenner CE, Spirtes MA, Weinhouse S (1952) Metabolism of neoplastic tissue II. A survey of enzymes of the citric acid cycle in transplanted tumors. Cancer Res 12:44–49

    CAS  PubMed  Google Scholar 

  • Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14:667–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiesner RJ, Kurowski TT, Zak R (1992) Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol Endocrinol 6:1458–1467

    CAS  PubMed  Google Scholar 

  • Williams MD, Van Remmen H, Conrad CC, Huang T-T, Epstein CJ, Richardson A (1998) Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 273:28510–28515

    CAS  PubMed  Google Scholar 

  • Wong GHW, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective role. Science 242:941–944

    CAS  PubMed  Google Scholar 

  • Wong GHW, Elwell JH, Oberley LW, Goeddel DV (1989) Manganese superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931

    CAS  PubMed  Google Scholar 

  • Wrutniak C, Cassar-Malek I, Marchal S, Rascle A, Heusser S, Keller J-M, Flechon J, Dauca M, Samarut J, Ghysdael J, Cabello G (1995) A 43-kDa protein related to c-Erb A a1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    CAS  PubMed  Google Scholar 

  • Yahara O, Hashimoto K, Taniguchi N, Ishikawa M, Sato Y, Yamashita H, Ohno H (1991) Serum manganese-superoxide dismutase in patients with neuromuscular disorders as judged by an ELISA. Res Commun Chem Pathol Pharmacol 72:315–326

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Maruyama W, Kato Y, Yi H, Shamoto-Nagai M, Tanaka M, Sato Y, Naoi M (2002) Selective nitration of mitochondrial complex I by peroxynitrite: involvement of mitochondria dysfunction and cell death of dopaminergic SH-SY5Y cells. J Neural Transm 109:1–13

    CAS  PubMed  Google Scholar 

  • Yang S-H, Liu R, Perez EJ, Wen Y, Stevens SM Jr, Valencia T, Brun-Zinkernagel A-M, Prokai L, Will Y, Dykens J, Koulen P, Simpkins JW (2004) Mitochondrial localization of estrogen receptor b. Proc Natl Acad Sci U S A 101:4130–4135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S-H, Sarkar SN, Liu R, Perez EJ, Wang X, Wen Y, Yan L-J, Simpkins JW (2009) Estrogen receptor b as a mitochondrial vulnerability factor. J Biol Chem 284:9540–9548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yen H-C, Oberley TD, Vichitbandha S, Ho Y-S, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98:1253–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yen H-C, Oberley TD, Gairola CG, Szweda LI, St Clair DK (1999) Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch Biochem Biophys 362:59–66

    CAS  PubMed  Google Scholar 

  • Yusenko MV, Ruppert T, Kovacs G (2010) Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis. Int J Biol Sci 6:213–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Yu D (2011) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33:122–128

    PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Gu J, Zhao L, He L, Qian W, Wang J, Wang Y, Qian Q, Qian C, Liu XY (2006) Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis inducing ligand gene virotherapy. Cancer Res 66:4291–4298

    CAS  PubMed  Google Scholar 

  • Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528

    CAS  PubMed  Google Scholar 

  • Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H (2010) Ligand-independent antiapoptotic function of estrogen receptor-b in lung cancer cells. Mol Endocrinol 24:1737–1747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong W, Oberley LW, Oberley TD, St Clair DK (1997) Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene 14:481–490

    CAS  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–226

    CAS  PubMed  Google Scholar 

  • Zwacka RM, Dudus L, Epperly MW, Greenberger JS, Engelhardt JF (1998) Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum Gene Ther 9:1381–1386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues in the field for their excellent publications not cited here due to space limitations. Work on mitochondrial signaling in our lab is supported by NIH grants CA 049797, CA143428, CA139843, RO1CA073599, and T32 ES007266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daret K. St. Clair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miriyala, S., Holley, A.K., Clair, D.K.S. (2014). Mitochondrion: A Novel Center for Cancer Cell Signaling. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_1

Download citation

Publish with us

Policies and ethics