Skip to main content

Numerical Dust Models

  • Chapter
  • First Online:
Mineral Dust

Abstract

Models of dust emission, transport and deposition are used as a tool to understand the various aspects that control distributions and impacts of dust. While global models of the dust cycle are used to investigate dust at large scales and long-term changes, regional dust models are the ideal tool to study in detail the processes that influence dust distribution as well as individual dust events. Simulating dust emissions, which depend non-linearly on surface wind speed, is a critical issue in dust transport models. Surface wind fields used to compute emission fluxes must be available at appropriate resolution to resolve the processes responsible for dust emissions. A major problem in model-based assessments of dust effects is that atmospheric models are often unable to reproduce the small-scale wind events that are responsible for a large part of dust emission. Recent satellite-retrieved surface roughness data for desert regions considerably improve dust emission computations. Model intercomparison studies highlight that the averages and seasonal variability of vertically integrated mineral dust parameters like optical thickness and Ångstrom exponent agree within a factor of two with observations. Less agreement is found for surface concentration and deposition fields of mineral dust particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J Geophys Res 106(D16):18075–18084

    Article  Google Scholar 

  • Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102(D10):11239–11249

    Article  Google Scholar 

  • Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion: aerosol particle sizes and binding energies. Geophys Res Lett 25(7):991–994

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London, 265 pp

    Google Scholar 

  • Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys 7:81–95

    Article  Google Scholar 

  • Balme M, Metzger S, Towner M, Ringrose T, Greeley R, Iversen J (2003) Friction wind speeds in dust devils: a field study. Geophys Res Lett 30(16), 1830. doi:10.1029/2003GL017493

  • Brindley H, Knippertz P, Ryder C, Ashpole I (2012) A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red-green-blue rendering to identify dust events: theoretical analysis. J Geophys Res 117, D07201. doi:10.1029/2011JD017326

    Google Scholar 

  • Coakley JA Jr, Cess RD (1985) Response of the NCAR community climate model to the radiative forcing by the naturally occurring tropospheric aerosol. J Atmos Sci 42:1677–1692

    Article  Google Scholar 

  • Coe MT (1998) A linked global model of terrestrial hydrologic processes: simulation of modern rivers, lakes, and wetlands. J Geophys Res 103(D8):8885–8899

    Article  Google Scholar 

  • Colarco P, da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J Geophys Res 115, D14207. doi:10.1029/2009JD012820

    Article  Google Scholar 

  • Darmenova K, Sokolik IN (2007) Assessing uncertainties in dust emission in the Aral Sea region caused by meteorological fields predicted with a mesoscale model. Global Planet Change 56(3–4):297–310

    Article  Google Scholar 

  • Draxler RR, Ginoux P, Stein AF (2010) An empirically derived emission algorithm for wind-blown dust. J Geophys Res 115, D16212. doi:10.1029/2009JD013167

    Article  Google Scholar 

  • Fécan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys Atmos Hydrosph Space Sci 17(1):149–157

    Google Scholar 

  • Gillette DA (1999) A qualitative geophysical explanation for “hot spot” dust emitting source regions. Contrib Atmos Phys 72:67–77

    Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin S-J (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106(D17):20255–20273

    Article  Google Scholar 

  • Hagen LJ, Wagner LE, Skidmore EL (1999) Analytical solutions and sensitivity analyses for sediment transport in WEPS. Trans ASAE 42(6):1715–1721

    Article  Google Scholar 

  • Haustein K, Pérez C, Baldasano JM, Jorba O, Basart S, Miller RL, Janjic Z, Black T, Nickovic S, Todd MC, Washington R, Müller D, Tesche M, Weinzierl B, Esselborn M, Schladitz A (2012) Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: experimental campaigns in Northern Africa. Atmos Chem Phys 12:2933–2958. doi:10.5194/acp-12-2933-2012

    Article  Google Scholar 

  • Heinold B, Helmert J, Hellmuth O, Wolke R, Ansmann A, Marticorena B, Laurent B, Tegen I (2007) Regional modeling of Saharan dust events using LM-MUSCAT: model description and case studies. J Geophys Res 112, D11204. doi:10.1029/2006JD007443

    Article  Google Scholar 

  • Herman JR, Barthia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J Geophys Res 102(D14):16911–16922

    Article  Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Kinne S, Prospero J, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol MC, Landing W, Liu X, Mahowald N, Miller RL, Morcrette J-J, Myhre G, Penner JE, Perlwitz JP, Stier P, Takemura T, Zender C (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. doi:10.5194/acp-11-7781-2011

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Article  Google Scholar 

  • Joussaume S (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J Geophys Res 95:1909–1941

    Article  Google Scholar 

  • Kang J-Y, Yoon S-C, Shao Y, Kim S-W (2011) Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J Geophys Res 116, D09202. doi:10.1029/2010JD014649

    Google Scholar 

  • Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Collins W, Dentener F, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Herzog M, Horowitz L, Isaksen I, Iversen T, Kirkevåg A, Kloster S, Koch D, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Lesins G, Liu X, Lohmann U, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. doi:10.5194/acp-6-1815-2006

    Article  Google Scholar 

  • Knippertz P, Deutscher C, Kandler K, Müller T, Schulz O, Schütz L (2007) Dust mobilization due to density currents in the Atlas region: observations from the SAMUM 2006 field campaign. J Geophys Res 112, D21109. doi:10.1029/2007JD008774

    Article  Google Scholar 

  • Kok JF (2011) Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos Chem Phys 11:10149–10156

    Article  Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Chazette P, Maignan F, Schmechtig C (2005). Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J Geophys Res 110, D18S04. doi:10.1029/2004JD005013

  • Laurent B, Marticorena B, Bergametti G, Mei F (2006) Modeling mineral dust emissions from Chinese and Mongolian deserts. Global Planet Change 52(1–4):121–141

    Article  Google Scholar 

  • Laurent B, Tegen I, Heinold B, Schepanski K, Weinzierl B, Esselborn M (2010) A model study of Saharan dust emissions and distributions during the SAMUM-1 campaign. J Geophys Res 115, D21210. doi:10.1029/2009JD012995

    Article  Google Scholar 

  • Leblanc M, Favreau G, Maley J, Nazoumou Y, Leduc C, Stagnitti F, van Oevelen PJ, Delclaux F, Lemoalle J (2006) Reconstruction of Megalake Chad using Shuttle Radar Topographic Mission data. Paleogeogr Paleoclimatol Paleoecol 239(1–2):16–27

    Article  Google Scholar 

  • Mahowald N, Kohfeld KE, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rohde H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104:15895–16436

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19(4), GB4025. doi:10.1029/2004GB002402

    Google Scholar 

  • Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111, D10202. doi:10.1029/2005JD006653

    Article  Google Scholar 

  • Marsham JH, Knippert P, Dixon N, Parker D, Lister D (2011) The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys Res Lett 38. doi:10.1029/2011GL048368

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle 1. Design of a soil-derived dust production scheme. J Geophys Res 100:16415

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doumé C, Legrand M (1997) Modeling the atmospheric dust cycle 2. Simulation of Saharan dust sources. J Geophys Res 102(D4):4387–4404

    Article  Google Scholar 

  • Marticorena B, Chazette P, Bergametti G, Dulac F, Legrand M (2004) Mapping the aerodynamic roughness length of desert surfaces from the POLDER/ADEOS bi-directional reflectance product. Int J Remote Sens 25(3):603–626

    Article  Google Scholar 

  • Menut L, Masson O, Bessagnet B (2009) Contribution of Saharan dust on radionuclides aerosols activity levels in Europe? The 21–22 February 2004 case study. J Geophys Res 114, D16202. doi:10.1029/2009JD011767

    Article  Google Scholar 

  • Miller RL, Cakmur RV, Perlwitz JP, Geogdzhayev IV, Ginoux P, Kohfeld KE, Koch D, Prigent C, Ruedy R, Schmidt GA, Tegen I (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res 111, D06208. doi:10.1029/2005JD005796

    Google Scholar 

  • Nickovic S, Dobricic S (1996) A model for long-range transport of desert dust. Mon Weather Rev 124(11):2537–2544

    Article  Google Scholar 

  • Pérez C, Nickovic S, Pejanovic G, Baldasano JM, Ozsoy E (2006) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophys Res 111(D16), D16206

    Article  Google Scholar 

  • Perlwitz J, Tegen I, Miller RL (2001) Interactive soil dust aerosol model in the GISS GCM 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J Geophys Res 106(D16):18167–18192

    Article  Google Scholar 

  • Prigent C, Tegen I, Aires F, Marticorena B, Zribi M (2005) Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. J Geophys Res 110, D09205. doi:10.1029/2004JD005370

    Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):2-1–2-31

    Google Scholar 

  • Reinfried F, Tegen I, Heinold B, Hellmuth O, Schepanski K, Cubasch U, Huebener H, Knippertz P (2009) Simulations of convectively-driven density currents in the Atlas region using a regional model: impacts on dust emission and sensitivity to horizontal resolution and convection schemes. J Geophys Res 114. doi:10.1029/2008JD010844

  • Ryder CL, Highwood EJ, Rosenberg PD, Trembath J, Brooke JK, Bart M, Dean A, Crosier J, Dorsey J, Brindley H, Banks J, Marsham JH, McQuaid JB, Sodemann H, Washington R (2013) Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos Chem Phys 13:303–325. doi:10.5194/acp-13-303-2013

    Article  Google Scholar 

  • Schepanski K, Tegen I, Laurent B, Heinold B, Macke A (2007) A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys Res Lett 34. doi:10.1029/2007GL030168

  • Schepanski K, Tegen I, Macke A (2012) Comparison of satellite based observations of Saharan dust source areas. Remote Sens Environ 123:90–97. doi:10.1016/j.rse.2012.03.019

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York, 1326 pp

    Google Scholar 

  • Shao YP (2000) Physics and modelling of wind erosion. Kluwer, Dordrecht

    Google Scholar 

  • Shao YP, Wang JJ (2003) A climatology of northeast Asian dust storms. Meteorol Z 12(4):187–196

    Article  Google Scholar 

  • Shao Y, Wyrwoll K-H, Chappell A, Huang JP, Lin ZH, McTainsh GH, Mikami M, Tanaka TY, Wang XL, Yoon S-C (2011) Dust cycle: an emerging core subject in Earth system science. Aeolian Res 2:181–204

    Article  Google Scholar 

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O, Minikin A, Petzold A (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156

    Article  Google Scholar 

  • Tanaka TY, Chiba M (2005) Global simulation of dust aerosol with a chemical transport model, MASINGAR. J Met Soc Jpn 83A:255–278

    Article  Google Scholar 

  • Tegen I, Fung I (1994) Modeling of mineral dust in the atmosphere: sources, transport and optical thickness. J Geophys Res 99(D11):22897–22914

    Article  Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100(D9):18707–18726

    Article  Google Scholar 

  • Tegen I, Harrison SP, Kohfeld K, Prentice IC, Coe M, Heimann M (2002) Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J Geophys Res 107(D21), 4576. doi:10.1029/2001JD000963

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105. doi:10.1029/2003GL019216, 012004

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Feichter J, Fillmore D, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen ISA, Iversen T, Kloster S, Koch D, Kirkevåg A, Kristjansson M, Krol A, Lauer JF, Lamarque X, Liu V, Montanaro G, Myhre G, Penner JE, Pitari G, Reddy MS, Seland Ø, Stier P, Takemura T, Tie X (2007) The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmos Chem Phys 7:4489–4501. doi:10.5194/acp-7-4489-2007

    Article  Google Scholar 

  • Todd MC, Bou Karam D, Cavazos C, Bouet C, Heinold B, Baldasano JM, Cautenet G, Koren I, Pérez C, Solmon F, Tegen I, Tulet P, Washington R, Zakey A (2008) Quantifying uncertainty in estimates of mineral dust flux: an intercomparison of model performance over the Bodélé Depression, northern Chad. J Geophys Res 113, D24107. doi:10.1029/2008JD010476

    Article  Google Scholar 

  • Uno I, Wang Z, Chiba M, Chun YS, Gong SL, Hara Y, Jung E, Lee SS, Liu M, Mikami M, Music S, Nickovic S, Satake S, Shao Y, Song Z, Sugimoto N, Tanaka T, Westphal DL (2006) Dust model intercomparison (DMIP) study over Asia: overview. J Geophys Res 111(D12), D12213

    Article  Google Scholar 

  • Washington R, Todd MC, Engelstaedter S, Mbainayel S, Mitchell F (2006) Dust and the low-level circulation over the Bodélé Depression, Chad: observations from BoDEx 2005. J Geophys Res 111, D03201. doi:10.1029/2005JD006502

    Google Scholar 

  • Westphal DL, Toon OB, Carlson TN (1988) A case study of mobilization and transport of Saharan dust. J Atmos Sci 45:2145–2175

    Article  Google Scholar 

  • White BR (1979) Soil transport by wind on Mars. J Geophys Res 84(NB9):4643–4651

    Article  Google Scholar 

  • Woodward S (2001) Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J Geophys Res 106(D16):18155–18166

    Article  Google Scholar 

  • Zender CS, Newman D, Torres O (2003) Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses. J Geophys Res 108(D17), 4543. doi:10.1029/2002JD003039

  • Zobler L (1986) A world soil file for global climate modeling, Technical report NASA TM- 87802. NASA, Washington, DC, 32 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Tegen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tegen, I., Schulz, M. (2014). Numerical Dust Models. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_9

Download citation

Publish with us

Policies and ethics