Skip to main content

Impact of Dust Radiative Forcing upon Climate

  • Chapter
  • First Online:
Mineral Dust

Abstract

Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn H-J, Park S-U, Chang L-S (2007) Effect of direct radiative forcing of Asian dust on the meteorological fields in East Asia during an Asian dust event period. J Appl Meteorol Climatol 46:1655–1681. doi:10.1175/JAM2551.1

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505. doi:10.1126/science.1204994

    Article  Google Scholar 

  • Cakmur R, Miller RL, Torres O (2004) Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J Geophys Res 109:D07201. doi:10.1029/2003JD4067

    Google Scholar 

  • Carlson TN, Prospero JM (1972) The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J Appl Meteorol 11:283–297

    Article  Google Scholar 

  • Cess RD, Potter GL, Ghan SJ, Gates WL (1985) The climatic effects of large injections of atmospheric smoke and dust: a study of climate feedback mechanisms with one- and three-dimensional climate models. J Geophys Res 90:12937–12950

    Article  Google Scholar 

  • Chou C, Neelin JD, Lohmann U, Feichter J (2005) Local and remote impacts of aerosol climate forcing on tropical precipitation. J Clim 18:4621–4636

    Article  Google Scholar 

  • Coakley JA, Cess RD (1985) Response of the NCAR community climate model to the radiative forcing by the naturally occurring tropospheric aerosol. J Atmos Sci 42:1677–1692

    Article  Google Scholar 

  • Colarco PR, Toon OB, Torres O, Rasch PJ (2002) Determining the UV imaginary index of refraction of Saharan dust particles from total ozone mapping spectrometer data using a three-dimensional model of dust transport. J Geophys Res 107(D16):4312. doi:10.1029/2001JD000903

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134. doi:10.1016/j.earscirev.2006.12.002

    Article  Google Scholar 

  • Cook BI, Miller RL, Seager R (2008) Dust and sea surface temperature forcing of the 1930s “dust bowl” drought. Geophys Res Lett 35:L08710. doi:10.1029/2008GL033486

    Google Scholar 

  • Cook BI, Miller RL, Seager R (2009) Amplification of the North American ‘dust bowl’ drought through human induced land degradation. Proc Natl Acad Sci USA 106(13):4997–5001. doi:10.1073/pnas.0810200106

    Google Scholar 

  • Cook B, Seager R, Miller RL, Mason J (2013) Intensification of North American megadroughts through surface and dust aerosol forcing. J Clim 26:4414–4430. doi:10.1175/JCLI-D-12-00022.1

    Article  Google Scholar 

  • Cowie SM, Knippertz P, Marsham JH (2013) Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys Res Lett 40:1868–1872. doi:10.1002/grl.50273

    Article  Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing (chap. 2). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu N, Zhao M (2012) Global scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. doi:10.1029/2012RG000388

    Article  Google Scholar 

  • Grousset FE, Ginoux P, Bory A, Biscaye PE (2003) Case study of Chinese dust plume reaching the French Alps. Geophys Res Lett 30:1277–1280. doi:10.1029/2002GL016833

    Article  Google Scholar 

  • Hansen ZK, Libecap GD (2004) Small farms, externalities, and the dust bowl of the 1930s. J Pol Econ 112:665–694. doi:10.1086/383102

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou D, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:19.1029/2005JD005776

    Article  Google Scholar 

  • Heinold B, Helmert J, Hellmuth O, Wolke R, Ansmann A, Marticorena B, Laurent B, Tegen I (2007) Regional modeling of Saharan dust events using LM-MUSCAT: model description and case studies. J Geophys Res 112:D11204. doi:10.1029/2006JD007443

    Article  Google Scholar 

  • Jacobs PM, Mason JA (2007) Late quaternary climate change, loess sedimentation, and soil profile development in the central great plains: a pedosedimentary model. Geol Soc Am Bull 119:462475. doi:10.1130/B25868.1

    Article  Google Scholar 

  • Kavouras IG, Etyemezian V, DuBois DW, Xu J, Pitchford M (2009) Source reconciliation of atmospheric dust causing visibility impairment in class I areas of the Western United States. J Geophys Res 114:D02308. doi:10.1029/2008JD009923

    Google Scholar 

  • Knippertz P, Todd MC (2012) Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and implications for modeling. Rev Geophys 50:RG1007. doi:10.1029/2011RG000362

    Article  Google Scholar 

  • Koven CD (2006) On the sources, composition, and climatic effects of mineral dust in the atmosphere. PhD thesis, University of California at Berkeley, Berkeley

    Google Scholar 

  • Lau K-M, Kim K-M (2006) Observational relationships between aerosol and asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res 103:31637–31645

    Article  Google Scholar 

  • Liepert BG, Feichter J, Lohmann U, Roeckner E (2004) Can aerosols spin down the water cycle in a warmer and moister world? Geophys Res Lett 31:L06207. doi:10.1029/2003GL019060

    Article  Google Scholar 

  • Lunt DJ, Valdes PJ (2002) The modern dust cycle: comparison of model results with observations and study of sensitivities. J Geophys Res 107(D23):4669. doi:10.1029/2002JD002316

    Article  Google Scholar 

  • Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnell JR, Albani S, Doney SC, Bhattacharya A, Curran MAJ, Flanner MG, Hoffman FM, Lawrence DM, Lindsay K, Mayewski PA, Neff J, Rothenberg D, Thomas E, Thornton PE, Zender CS (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893. doi:10.5194/acp-10-10875-2010

    Article  Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z-C (2007) Global climate projections (chap. 10). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Miao X, Mason JA, Swinehart JB, Loope DB, Hanson PR, Goble RJ, Liu X (2007) A 10,000 year record of dune activity, dust storms, and severe drought in the central great plains. Geology 35:119–122. doi:10.1130/G23133A.1

    Article  Google Scholar 

  • Miller RL (2012) Adjustment to radiative forcing in a simple coupled ocean-atmosphere model. J Clim 25:7802–7821. doi:10.1175/JCLI-D-11-00119.1

    Article  Google Scholar 

  • Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11:3247–3267

    Article  Google Scholar 

  • Miller RL, Tegen I (1999) Radiative forcing of a tropical direct circulation by soil dust aerosols. J Atmos Sci 56:2403–2433

    Article  Google Scholar 

  • Miller JR, Russell GL, Tsang L-C (1983) Annual oceanic heat transports computed from an atmospheric model. Dyn Atmos Oceans 7:95–109

    Article  Google Scholar 

  • Miller RL, Perlwitz J, Tegen I (2004a) Modeling Arabian dust mobilization during the Asian summer monsoon: the effect of prescribed versus calculated SST. Geophys Res Lett 31(22):L22214. doi:10.1029/2004GL020669

    Article  Google Scholar 

  • Miller RL, Tegen I, Perlwitz J (2004b) Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res 109:D04203. doi:10.1029/2003JD004085

    Google Scholar 

  • Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Prigent C, Ruedy R, Schmidt GA, Tegen I (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Studies ModelE AGCM. J Geophys Res 111:D06208. doi:10.1029/2005JD005796

    Google Scholar 

  • Miller RL, Slingo A, Barnard JC, Kassianov E (2009) Seasonal contrast in the surface energy balance of the Sahel. J Geophys Res 114:D00E05. doi:10.1029/2008JD010521

  • Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37, L13701. doi:10.1029/2010GL042895

    Article  Google Scholar 

  • N’Tchayi Mbourou G, Bertrand J, Nicholson S (1997) The diurnal and seasonal cycles of wind-borne dust over Africa North of the equator. J Appl Meteorol 36:868–882

    Article  Google Scholar 

  • Patterson EM, Gillette DA, Stockton BH (1977) Complex index of refraction between 300 and 700 nm for Saharan aerosols. J Geophys Res 82:3153–3160

    Article  Google Scholar 

  • Pérez C, Nickovic S, Pejanovic G, Baldasano JM, Özsoy E (2006) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophys Res 111:D16206. doi:10.1029/2005JD006717

    Article  Google Scholar 

  • Perlwitz J, Miller R (2010) Cloud cover increase with increasing aerosol absorptivity—a counterexample to the conventional semi-direct aerosol effect. J Geophys Res 115:D08203. doi:10.1029/2009JD012637

    Google Scholar 

  • Perlwitz J, Tegen I, Miller RL (2001) Interactive soil dust aerosol model in the GISS GCM. Part I: sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J Geophys Res 106:18167–18192

    Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettege T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 5326–5333. doi:10.1073/pnas.0500656102

  • Randall D, Wood R, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer R, Sumi A, Taylor K (2007) Cilmate models and their evaluation (chap. 8). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Schepanski K, Tegen I, Todd MC, Heinold B, Bon̈isch G, Laurent B, Macke A (2009) Meteorological processes forcing Saharan dust emission inferred from msg-seviri observations of subdaily dust source activation and numerical models. J Geophys Res 114:D10201. doi:10.1029/2008JD010325

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Cheng Y, DelGenio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang N, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present day atmospheric simulations using GISS modelE: comparison to in-situ, satellite and reanalysis data. J Clim 19:153–192

    Article  Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer S, Bhat MK, Bleck R, Canuto V, Chen Y, Cheng Y, Clune TL, DelGenio A, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Marshall J, Mathews EE, Menon S, Miller RL, Oinas V, Oloso A, Perlwitz J, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed R, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang J (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184. doi:10.1002/2013MS000265

    Article  Google Scholar 

  • Schneider EK (1983) Martian dust storms: interpretive axially symmetric models. Icarus 55:302–331

    Article  Google Scholar 

  • Schopf PS (1983) On equatorial waves and El Niño. II: effects of air-sea thermal coupling. J Phys Oceanogr 13:1878–1893

    Google Scholar 

  • Shindell D, Schulz M, Ming Y, Takemura T, Faluvegi G, Ramaswamy V (2010) Spatial scales of climate response to inhomogeneous radiative forcing. JGR 115:D19110. doi:10.1029/2010JD014108

    Article  Google Scholar 

  • Sinyuk A, Torres O, Dubovik O (2003) Combined use of satellite and surface observations to infer the imaginary part of the refractive index of Saharan dust. Geophys Res Lett 30. doi:10.1029/2002GL016189

  • Slingo A, Ackerman TP, Allan RP, Kassianov EI, McFarlane SA, Robinson GJ, Barnard JC, Miller MA, Harries JE, Russell JE, Dewitte S (2006) Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys Res Lett 33:L24817. doi:10.1029/2006GL027869

    Article  Google Scholar 

  • Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konare A (2008) Dust aerosol impact on regional precipitation over Western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi:10.1029/2008GL035900

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res. doi:10.3354/cr01039

    Google Scholar 

  • Stephens GL, Wood NB, Pakula LA (2004) On the radiative effects of dust on tropical convection. Geophys Res Lett 31:L23112. doi:10.1029/2004GL021342

    Article  Google Scholar 

  • Swap R, Garstang M, Greco S, Talbot R, Kȧllberg P (1992) Saharan dust in the Amazon basin. Tellus 44B:133–149

    Article  Google Scholar 

  • Tegen I, Lacis AA (1996) Modeling of particle influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244

    Article  Google Scholar 

  • Tegen I, Lacis AA, Fung I (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422

    Article  Google Scholar 

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105. doi:10.1029/2003GL019216

    Google Scholar 

  • Tegen I, Heinold B, Todd M, Helmert J, Washington R, Dubovik O (2006) Modelling soil dust aerosol in the bodéelé depression during the BoDEx campaign. Atmos Chem Phys 6:4345–4359

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen I, Kloster S, Koch D, Kirkevåg A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within aerocom. Atmos Chem Phys 6(7):1777–1813. doi:10.5194/acp-6-1777-2006

    Article  Google Scholar 

  • Volz FE (1973) Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and flyash. Appl Opt 12:564–568

    Article  Google Scholar 

  • Woodage MJ, Slingo A, Woodward S, Comer RE (2010) U.K. HiGEM: simulations of desert dust and biomass burning aerosols with a high-resolution atmospheric GCM. J Clim 23:1636–1659. doi:10.1175/2009JCLI2994.1

    Article  Google Scholar 

  • Woodward S, Roberts DL, Betts RA (2005) A simulation of the effect of climate changeinduced desertification on mineral dust aerosol. Geophys Res Lett 32:L18810. doi:10.1029/2005GL023482

    Article  Google Scholar 

  • Xian P (2008) Seasonal migration of the ITCZ and implications for aerosol radiative impact. PhD thesis, Columbia University

    Google Scholar 

  • Yoshioka M, Mahowald NM, Conley AJ, Collins WD, Fillmore DW, Zender CS, Coleman DB (2007) Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J Clim 20:1445–1467

    Article  Google Scholar 

  • Yue X, Wang H, Liao H, Fan K (2010) Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J Geophys Res 115:D04201. doi:10.1029/2009JD012063

    Google Scholar 

  • Yue X, Liao H, Wang HJ, Li SL, Tang JP (2011) Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos Chem Phys 6049–6062. doi:10.5194/acp-11-6049-2011

  • Yulaeva E, Wallace JM (1994) The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J Clim 7:1719–1736. doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miller, R.L., Knippertz, P., Pérez García-Pando, C., Perlwitz, J.P., Tegen, I. (2014). Impact of Dust Radiative Forcing upon Climate. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_13

Download citation

Publish with us

Policies and ethics