Skip to main content

Mineral Dust and its Microphysical Interactions with Clouds

  • Chapter
  • First Online:
Mineral Dust

Abstract

Our understanding of the interactions of aerosols and clouds has a strong heritage in laboratory experiments, field measurements, and process modeling. We present a review on the state of knowledge for mineral dust emitted from major global dust source regions. Laboratory studies and field measurements have given insights on processes and mechanisms taking place when mineral dust is released into the atmosphere and reacts with the atmospheric constituents. Furthermore, theoretical approaches and parameterizations have been established to interpret the observations and quantitatively express the mechanisms by which dust can act as cloud condensation nuclei (CCN) and ice nuclei (IN). Finally, model simulations have been used in order to study the effects of dust particles to different aerosol-cloud-climate interactions. Dust can act as efficient CCN in clouds solely based on their relatively large size combined with the hydrophilicity from the adsorption of water vapor on their insoluble core. When mixed with even small fractions of hygroscopic material from emission or atmospheric processing, their hygroscopicity and CCN activity are significantly enhanced. The theoretical frameworks of adsorption activation and Köhler theory are presented to explain dust CCN activity, together with a summary on the potential contributions of dust to cloud droplet number concentration (CDNC), and its role in regulating supersaturation. Mineral dust aerosol is an effective IN and, combined with their concentration, can dominate ice production in cirrus and mixed-phase clouds even at great distances from source regions. The pathways to nucleation of ice are different for different cloud types and have distinct effects in those clouds. Our fundamental understanding of ice nucleation lags behind that for CCN activation, and a key challenge is that we cannot predict a priori which aerosol materials will make effective IN. Nevertheless, numerous field and laboratory studies have shown that mineral dust from deserts is one of the most important ice-nucleating aerosol types around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht B (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342

    Google Scholar 

  • Ansmann A, Mattis I, Müller D, Wandinger U, Radlach M, Althausen D, Damoah R (2005) Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J Geophys Res Atmos 110(D18), D18S12. doi:10.1029/2004jd005000

  • Ansmann A, Tesche M, Seifert P, Althausen D, Engelmann R, Fruntke J, Wandinger U, Mattis I, Mueller D (2009) Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J Geophys Res 114, D17208. doi:10.1029/2008jd011659

    Google Scholar 

  • Archuleta CM, DeMott PJ, Kreidenweis SM (2005) Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos Chem Phys 5:2617–2634

    Google Scholar 

  • Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian KJ, Carslaw KS, Dobbie S, O’Sullivan D, Malkin TL (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498(7454):355–358. doi:10.1038/nature12278

    Google Scholar 

  • Barahona D (2012) On the ice nucleation spectrum. Atmos Chem Phys 12(8):3733–3752. doi:10.5194/acp-12-3733-2012

    Google Scholar 

  • Barahona D, Nenes A (2007) Parameterization of cloud droplet formation in large scale models: including effects of entrainment. J Geophys Res 112:D16026. doi:10.1029/16207JD008473

  • Barahona D, Nenes A (2009) Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation-polydisperse ice nuclei. Atmos Chem Phys 9:5933–5948. http://www.atmos-chem-phys.net/9/5933/2009/

  • Barahona D, Rodriguez J, Nenes A (2010) Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing. J Geophys Res 115, D23213. doi:10.1029/2010JD014273

    Google Scholar 

  • Baustian KJ, Cziczo DJ, Wise ME, Pratt KA, Kulkarni G, Hallar AG, Tolbert MA (2012) Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach. J Geophys Res 117, D06217. doi:10.1029/2011jd016784

    Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Broadley SL, Murray BJ, Herbert RJ, Atkinson JD, Dobbie S, Malkin TL, Condliffe E, Neve L (2012) Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos Chem Phys 12(1):287–307. doi:10.5194/acp-12-287-2012

    Google Scholar 

  • Burrows SM, Hoose C, Pöschl U, Lawrence MG (2013) Ice nuclei in marine air: biogenic particles or dust? Atmos Chem Phys 13(1):245–267. doi:10.5194/acp-13-245-2013

    Google Scholar 

  • Cakmur RV, Miller RL, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Tegen I, Zender CS (2006) Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J Geophys Res 111, D06207. doi:10.1029/2005JD005791

    Google Scholar 

  • Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, Mann GW, Spracklen DV, Woodhouse MT, Regayre LA (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503. doi: 10.1038/nature12674

  • Cheng WYY, Carrió GG, Cotton WR, Saleeby SM (2009) Influence of cloud condensation and giant cloud condensation nuclei on the development of precipitating trade wind cumuli in a large eddy simulation. J Geophys Res 114, D08201. doi:10.1029/2008JD011011

    Google Scholar 

  • Chernoff DI, Bertram AK (2010) Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals. J Geophys Res 115. doi:10.1029/2010jd014254

  • Choi YS, Lindzen RS, Ho CH, Kim J (2010) Space observations of cold-cloud phase change. Proc Natl Acad Sci U S A 107(25):11211–11216. doi:10.1073/pnas.1006241107

    Google Scholar 

  • Conen F, Morris CE, Leifeld J, Yakutin MV, Alewell C (2011) Biological residues define the ice nucleation properties of soil dust. Atmos Chem Phys 11(18):9643–9648. doi:10.5194/acp-11-9643-2011

    Google Scholar 

  • Connolly PJ, Mohler O, Field PR, Saathoff H, Burgess R, Choularton T, Gallagher M (2009) Studies of heterogeneous freezing by three different desert dust samples. Atmos Chem Phys 9(8):2805–2824. doi:10.5194/acp-9-2805-2009

    Google Scholar 

  • Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, White AB, Ralph FM, Minnis P, Comstock JM, Tomlinson JM, Prather KA (2013) Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Science 339(6127):1572–1578. doi:10.1126/science.1227279

    Google Scholar 

  • Crumeyrolle S, Gomes L, Tulet P, Matsuki A, Schwarzenboeck A, Crahan K (2008) Increase of the aerosol hygroscopicity by cloud processing in a mesoscale system: a case study from the AMMA campaign. Atmos Chem Phys 8:6907–6924

    Google Scholar 

  • Cui ZQ, Carslaw KS, Yin Y, Davies S (2006) A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. J Geophys Res 111, D05201. doi:10.1029/2005JD005981

  • Cziczo DJ, Froyd KD, Gallavardin SJ, Moehler O, Benz S, Saathoff H, Murphy DM (2009) Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ Res Lett 4(4). doi:10.1088/1748-9326/4/4/044013

  • Cziczo DJ, Froyd KD, Hoose C, Jensen EJ, Diao M, Zondlo MA, Smith JB, Twohy CH, Murphy DM (2013) Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340(6138):1320–1324. doi:10.1126/science.1234145

    Google Scholar 

  • de Boer G, Morrison H, Shupe MD, Hildner R (2011) Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys Res Lett 38, L01803. doi:10.1029/2010gl046016

    Google Scholar 

  • DeLeon-Rodriguez N, Lathem TL, Rodriguez LM, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT (2013) The microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1212089110

    Google Scholar 

  • DeMott PJ (1995) Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos Res 38(1–4):63–99

    Google Scholar 

  • DeMott PJ, Rogers DC, Kreidenweis SM (1997) The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J Geophys Res 102(D16):19575–19584

    Google Scholar 

  • DeMott PJ, Cziczo DJ, Prenni AJ, Murphy DM, Kreidenweis SM, Thomson DS, Borys R, Rogers DC (2003a) Measurements of the concentration and composition of nuclei for cirrus formation. Proc Natl Acad Sci U S A 100(25):14655–14660

    Google Scholar 

  • DeMott PJ, Sassen K, Poellot MR, Baumgardner D, Rogers DC, Brooks SD, Prenni AJ, Kreidenweis SM (2003b) African dust aerosols as atmospheric ice nuclei. Geophys Res Lett 30(14),1732. doi:10.1029/2003GL017410

    Google Scholar 

  • Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101(D17):22869–22889

    Google Scholar 

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud JP, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6(12):4321–4344. doi:10.5194/acp-6-4321-2006

    Google Scholar 

  • Durant AJ, Shaw RA (2005) Evaporation freezing by contact nucleation inside-out. Geophys Res Lett 32, L20814. doi:10.1029/2005GL024175

    Google Scholar 

  • Eastwood ML, Cremel S, Wheeler M, Murray BJ, Girard E, Bertram AK (2009) The effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophys Res Lett 36, L02811. doi:10.1029/2008GL035997

  • Ebert M, Worringen A, Benker N, Mertes S, Weingartner E, Weinbruch S (2011) Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds. Atmos Chem Phys 11(6):2805–2816. doi:10.5194/acp-11-2805-2011

    Google Scholar 

  • Field PR, Heymsfield AJ, Shipway BJ, DeMott PJ, Pratt KA, Rogers DC, Stith J, Prather KA (2012) Ice in clouds experiment-layer clouds. Part II: testing characteristics of heterogeneous ice formation in Lee wave clouds. J Atmos Sci 69(3):1066–1079. doi:10.1175/jas-d-11-026.1

    Google Scholar 

  • Formenti P, Schütz L, Ballanski Y, Desboeufs K, Ebert M, Kandler K, Petzold A, Scheuvens D, Weinbruch S, Zhang D (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231–8256

    Google Scholar 

  • Fornea AP, Brooks SD, Dooley JB, Saha A (2009) Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot and soil. J Geophys Res 114, D13201. doi:10.1029/2009JD011958

    Google Scholar 

  • Froyd KD, Murphy DM, Lawson P, Baumgardner D, Herman RL (2010) Aerosols that form subvisible cirrus at the tropical tropopause. Atmos Chem Phys 10(1):209–218. doi:10.5194/acp-10-209-2010

    Google Scholar 

  • Garimella S, Huang Y-w, Seewald JS, Cziczo DJ (2013) Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material. Atmos Chem Phys Discuss 13:31041–31078. doi:10.5194/acpd-13-31041-2013

    Google Scholar 

  • Gettelman A, Liu X, Barahona D, Lohmann U, Chen C (2012) Climate impacts of ice nucleation. J Geophys Res 117. doi:10.1029/2012jd017950

  • Ghan S, Guzman G, Abdul-Razzak H (1998) Competition between sea-salt and sulfate particles as cloud condensation nuclei. J Atmos Sci 55:3340–3347

    Google Scholar 

  • Ghan S, Easter R, Hudson J, Breon FM (2001) Evaluation of aerosol indirect radiative forcing in MIRAGE. J Geophys Res 106(D6):5317–5334

    Google Scholar 

  • Ghan SJ, Abdul-Razzak H, Nenes A, Ming Y, Liu X, Ovchinnikov M, Shipway B, Meskhidze N, Xu J, Shi X (2011) Droplet nucleation: physically-based parameterization and comparative evaluation. J Adv Model Earth Syst 3:M10001. doi:10.1029/2011MS000074

  • Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon J-H, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25:6461–6476

    Google Scholar 

  • Gibson ER, Hudson PK, Grassian VH (2006) Aerosol chemistry and climate: laboratory studies of the carbonate component of mineral dust and its reaction products. Geophys Res Lett 33, L13811. doi:10.1029/2006GL026386

    Google Scholar 

  • Gibson ER, Gierlus KM, Hudson PK, Grassian VH (2007) Generation of internally mixed insoluble and soluble aerosol particles to investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol. Aerosol Sci Technol 41(10):914–924

    Google Scholar 

  • Gierlus KM, Laskina O, Abernathy TL, Grassian VH (2012) Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos Environ 46:125–130

    Google Scholar 

  • Hatch CD, Greenaway AL, Christie MJ, Baltrusaitis J (2014) Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: montmorillonite and illite. Atmos Environ 87:26–33

    Google Scholar 

  • Henson BF (2007) An adsorption model of insoluble particle activation: application to black carbon. J Geophys Res 112, D24S16. doi:10.1029/2007JD008549

  • Herbert RJ, Murray BJ, Whale TF, Dobbie SJ, Atkinson JD (2014) Representing time-dependent freezing behaviour in immersion mode ice nucleation. Atmos Chem Phys Discuss 14(2):1399–1442. doi:10.5194/acpd-14-1399-2014

    Google Scholar 

  • Herich H, Tritscher T, Wiacek A, Gysel M, Weingartner E, Lohmann U, Baltensperger U, Cziczo DJ (2009) Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. Phys Chem Chem Phys 11:7804–7809. doi:10.1039/b901585j

  • Herich H, Tritscher T, Wiacek A, Gysel M, Weingartner E, Lohmann U, Baltensperger U, Cziczo DJ (2011) Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. Phys Chem Chem Phys 11:7804–7809

    Google Scholar 

  • Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854

    Google Scholar 

  • Hoose C, Kristjánsson JE, Chen JP, Hazra A (2010) A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J Atmos Sci 67(8):2483–2503. doi:10.1175/2010jas3425.1

    Google Scholar 

  • Hoyle CR, Pinti V, Welti A, Zobrist B, Marcolli C, Luo B, Höskuldsson Á, Mattsson HB, Stetzer O, Thorsteinsson T, Larsen G, Peter T (2011) Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos Chem Phys 11(18):9911–9926. doi:10.5194/acp-11-9911-2011

    Google Scholar 

  • Jensen EJ, Pfister L, Bui TP, Lawson P, Baumgardner D (2010) Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos Chem Phys 10(3):1369–1384. doi:10.5194/acp-10-1369-2010

    Google Scholar 

  • Kamphus M, Ettner-Mahl M, Klimach T, Drewnick F, Keller L, Cziczo DJ, Mertes S, Borrmann S, Curtius J (2010) Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos Chem Phys 10(16):8077–8095. doi:10.5194/acp-10-8077-2010

    Google Scholar 

  • Kanitz T, Seifert P, Ansmann A, Engelmann R, Althausen D, Casiccia C, Rohwer EG (2011) Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys Res Lett 38, L17802. doi:10.1029/2011gl048532

    Google Scholar 

  • Karcher B, Lohmann U (2003) A parameterization of cirrus cloud formation: heterogeneous freezing. J Geophys Res 108(D14),4402. doi:10.1029/2002JD003220

  • Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res 116, D23204. doi:10.1029/2011JD016283

    Google Scholar 

  • Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kelly JT, Chuang CC, Wexler AS (2007) Influence of dust composition on cloud droplet formation. Atmos Environ 41:2904–2916

    Google Scholar 

  • Khvorostyanov VI, Curry JA (2005) The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part II: parcel model simulation. J Atmos Sci 62(2):261–285

    Google Scholar 

  • Khvorostyanov VI, Curry JA (2007) Refinements to the Köhler’s theory of aerosol equilibrium radii, size spectra, and droplet activation: effects of humidity and insoluble fraction. J Geophys Res 112, D05206. doi:10.1029/2006JD007672

    Google Scholar 

  • Kim J-S, Park K (2012) Atmospheric aging of Asian dust particles during long range transport. Aerosol Sci Technol 46(8):913–924

    Google Scholar 

  • Kirkevag A, Iversen T, Seland O, Debernard JB, Storelvmo T, Kristjansson JE (2008) Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus 60(3):492–512

    Google Scholar 

  • Knopf DA, Alpert PA (2013) A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. Faraday Discuss 165:513–534. doi:10.1039/c3fd00035d

    Google Scholar 

  • Knopf DA, Koop T (2006) Heterogeneous nucleation of ice on surrogates of mineral dust. J Geophys Res 111(D12):D12201. doi:10.1029/2005JD006894

    Google Scholar 

  • Koehler KA, Kreidenweis SM, DeMott PJ, Petters MD, Prenni AJ, Carrico CM (2009) Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophys Res Lett 36, L08805. doi:10.1029/2009GL037348

    Google Scholar 

  • Koehler KA, Kreidenweis SM, DeMott PJ, Petters MD, Prenni AJ, Möhler O (2010) Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmos Chem Phys 10(23):11955–11968. doi:10.5194/acp-10-11955-2010

    Google Scholar 

  • Köhler H (1936) The nucleus in the growth of hygroscopic droplets. Trans Faraday Soc 32:1152

    Google Scholar 

  • Koop T, Luo BP, Tsias A, Peter T (2000) Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406(6796):611–614

    Google Scholar 

  • Krämer M, Schiller C, Afchine A, Bauer R, Gensch I, Mangold A, Schlicht S, Spelten N, Sitnikov N, Borrmann S, de Reus M, Spichtinger P (2009) Ice supersaturations and cirrus cloud crystal numbers. Atmos Chem Phys 9(11):3505–3522. doi:10.5194/acp-9-3505-2009

    Google Scholar 

  • Kumai M (1961) Snow crystals and the identification of the nuclei in the Northern United-States of America. J Meteorol 18(2):139–150

    Google Scholar 

  • Kumar P, Sokolik IN, Nenes A (2009a) Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN. Atmos Chem Phys 9:2517–2532

    Google Scholar 

  • Kumar P, Nenes A, Sokolik I (2009b) The importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol. Geophys Res Lett 36, L24804. doi:10.1029/2009GL040827

    Google Scholar 

  • Kumar P, Sokolik IN, Nenes A (2011a) Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos Chem Phys 11:3527–3541

    Google Scholar 

  • Kumar P, Sokolik IN, Nenes A (2011b) Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals. Atmos Chem Phys 11:8661–8676

    Google Scholar 

  • Laaksonen A, Korhonen P, Kulmala M, Charlson RJ (1998) Modification of the Kohler equation to include soluble trace gases and slightly soluble substances. J Atmos Sci 55:853–862

    Google Scholar 

  • Ladino Moreno LA, Stetzer O, Lohmann U (2013) Contact freezing: a review of experimental studies. Atmos Chem Phys 13(19):9745–9769. doi:10.5194/acp-13-9745-2013

    Google Scholar 

  • Lance, S. (2007) Quantifying compositional impacts of ambient aerosol on cloud droplet formation. Doctoral thesis, Georgia Institute of Technology. https://smartech.gatech.edu/handle/1853/26700

  • Lance S, Shupe M, Feingold G, Brock C, Cozic J, Holloway J, Moore RH, Nenes A, Schwarz J, Spackman R, Froyd KD, Murphy DM, Brioude J, Cooper O, Stohl A, Burkhart JF (2011) CCN as a modulator for ice processes in arctic mixed-phase clouds. Atmos Chem Phys 11:8003–8015

    Google Scholar 

  • Lathem TL, Kumar P, Nenes A, Dufek J, Sokolik IN, Trail M, Russell A (2011) Hygroscopic properties of volcanic ash. Geophys Res Lett 38, L11802. doi:10.1029/2011GL047298

    Google Scholar 

  • Levin Z, Cotton WR (2008) Aerosol pollution impact on precipitation: a scientific review. Springer, New York, p 382. ISBN: 978-1-4020-8689-2

    Google Scholar 

  • Levin Z, Teller A, Ganor E (2005) On the interactions of mineral dust, sea-salt particles, and clouds: a measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. J Geophys Res 110, D20202. doi:10.1029/2005JD005810

    Google Scholar 

  • Li W, Shao LY (2009a) Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J Geophys Res 114, D09302. doi:10.1029/2008JD011285

    Google Scholar 

  • Li WJ, Shao LY (2009b) Observation of nitrate coatings on atmospheric mineral dust particles. Atmos Chem Phys 9:1863–1871

    Google Scholar 

  • Li L, Chen ZM, Zhang YH, Zhu T, Li JL, Ding J (2006) Kinetics and mechanism of heterogeneous oxidation of sulfur by ozone on surface of calcium carbonate. Atmos Chem Phys 6:2453–2464

    Google Scholar 

  • Li R, Min Q-L, Harrison LC (2010) A case study: the indirect aerosol effects of mineral dust on warm clouds. J Atmos Sci 67:805–816. doi:10.1175/2009JAS3235.1

    Google Scholar 

  • Liu X, Shi X, Zhang K, Jensen EJ, Gettelman A, Barahona D, Nenes A, Lawson P (2012) Sensitivity studies of dust ice nuclei effect on cirrus clouds with the community atmosphere model CAM5. Atmos Chem Phys 12:12061–12079

    Google Scholar 

  • Lohmann U, Diehl K (2006) Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J Atmos Sci 63:968–981

    Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Google Scholar 

  • Lohmann U, Stier P, Hoose C, Ferrachat S, Kloster S, Roeckner E, Zhang J (2007) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys 7(13):3425–3446

    Google Scholar 

  • Lüönd F, Stetzer O, Welti A, Lohmann U (2010) Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode. J Geophys Res 115(D14), D14201. doi:10.1029/2009jd012959

    Google Scholar 

  • Manktelow PT, Carslaw KS, Mann GW, Spracklen DV (2010) The impact of dust on sulfate aerosol, CN, and CCN during an East Asian dust storm. Atmos Chem Phys 10:365–382

    Google Scholar 

  • Marcolli C (2013) Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos Chem Phys Discuss 13(6):16367–16456. doi:10.5194/acpd-13-16367-2013

    Google Scholar 

  • Marcolli S, Gedamke S, Peter T, Zobrist B (2007) Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos Chem Phys 7:5081–5091

    Google Scholar 

  • Mason BJ (1971) The Physics of clouds. Clarendon Press, Oxford

    Google Scholar 

  • Matsuki A, Schwarzenboeck A, Venzac H, Laj P, Crumeyrolle S, Gomes L (2010) Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006. Atmos Chem Phys 10:1057–1069

    Google Scholar 

  • Mechem DB, Kogan YL (2008) A bulk parameterization of giant CCN. J Atmos Sci 65:2458–2466

    Google Scholar 

  • Menon S, Del Genio AD, Koch D, Tselioudis G (2002) GCM simulations of the aerosol indirect effect: sensitivity to cloud parameterization and aerosol burden. J Atmos Sci 59:692–713

    Google Scholar 

  • Möhler O, Field PR, Connolly P, Benz S, Saathoff H, Schnaiter M, Wagner R, Cotton R, Kramer M, Mangold A, Heymsfield AJ (2006) Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos Chem Phys 6:3007–3021

    Google Scholar 

  • Morales Betancourt R, Nenes A (2013) Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a Global Climate Model. Atmos Chem Phys Discuss 13:31479–31526. doi:10.5194/acpd-13-31479-2013

    Google Scholar 

  • Morrison H, de Boer G, Feingold G, Harrington J, Shupe MD, Sulia K (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 5(1):11–17. doi:10.1038/ngeo1332

    Google Scholar 

  • Mullin JW (2001) Crystallization, 4th edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Murray BJ, Wilson TW, Dobbie S, Cui ZQ, Al-Jumur S, Mohler O, Schnaiter M, Wagner R, Benz S, Niemand M, Saathoff H, Ebert V, Wagner S, Karcher B (2010) Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat Geosci 3(4):233–237. doi:10.1038/NGEO817

    Google Scholar 

  • Murray BJ, Broadley SL, Wilson TW, Atkinson JD, Wills RH (2011) Heterogeneous freezing of water droplets containing kaolinite particles. Atmos Chem Phys 11(9):4191–4207. doi:10.5194/acp-11-4191-2011

    Google Scholar 

  • Murray BJ, O’Sullivan D, Atkinson JD, Webb ME (2012) Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev 41(19):6519–6554. doi:10.1039/c2cs35200a

    Google Scholar 

  • Navea JG, Chen H, Huang M, Carmichael GR, Grassian VH (2010) A comparative evaluation of water uptake on several mineral dust sources. Environ Chem 7(2):162–170

    Google Scholar 

  • Nenes A, Charlson RJ, Facchini MC, Kulmala M, Laaksonen A, Seinfeld JH (2002) Can chemical effects on cloud droplet number rival the first indirect effect? Geophys Res Lett 29(17):1848. doi:10.1029/2002GL015295

    Google Scholar 

  • Nickovic S, Vukovic A, Vujadinovic M, Djurdjevic V, Pejanovic G (2012) Technical note: high-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos Chem Phys 12(2):845–855. doi:10.5194/acp-12-845-2012

    Google Scholar 

  • Niedermeier D, Hartmann S, Shaw RA, Covert D, Mentel TF, Schneider J, Poulain L, Reitz P, Spindler C, Clauss T, Kiselev A, Hallbauer E, Wex H, Mildenberger K, Stratmann F (2010) Heterogeneous freezing of droplets with immersed mineral dust particles – measurements and parameterization. Atmos Chem Phys 10(8):3601–3614. doi:10.5194/acp-10-3601-2010

    Google Scholar 

  • Niedermeier D, Hartmann S, Clauss T, Wex H, Kiselev A, Sullivan RC, DeMott PJ, Petters MD, Reitz P, Schneider J, Mikhailov E, Sierau B, Stetzer O, Reimann B, Bundke U, Shaw RA, Buchholz A, Mentel TF, Stratmann F (2011a) Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos Chem Phys 11(21):11131–11144. doi:10.5194/acp-11-11131-2011

    Google Scholar 

  • Niedermeier D, Shaw RA, Hartmann S, Wex H, Clauss T, Voigtländer J, Stratmann F (2011b) Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior. Atmos Chem Phys 11(16):8767–8775. doi:10.5194/acp-11-8767-2011

    Google Scholar 

  • Niemand M, Möhler O, Vogel B, Vogel H, Hoose C, Connolly P, Klein H, Bingemer H, DeMott P, Skrotzki J, Leisner T (2012) A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J Atmos Sci. doi:10.1175/jas-d-11-0249.1

    Google Scholar 

  • O’Sullivan D, Murray BJ, Malkin TL, Whale TF, Umo NS, Atkinson JD, Price HC, Baustian KJ, Browse J, Webb ME (2014) Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components. Atmos Chem Phys 14(4):1853–1867. doi:10.5194/acp-14-1853-2014

    Google Scholar 

  • Penner JE, Quaas J, Storelvmo T, Takemura T, Boucher O, Guo H, Kirkevag A, Kristjansson JE, Seland O (2006) Model intercomparison of indirect aerosol effects. Atmos Chem Phys 6:3391–3405

    Google Scholar 

  • Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971

    Google Scholar 

  • Phillips VTJ, Donner LJ, Garner ST (2007) Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J Atmos Sci 64(3):738–761. doi:10.1175/jas3869.1

    Google Scholar 

  • Posselt R, Lohmann U (2008) Influence of Giant CCN on warm rain processes in the ECHAM5 GCM. Atmos Chem Phys 8:3769–3788

    Google Scholar 

  • Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, Twohy CH, Prenni AJ, Prather KA (2009) In situ detection of biological particles in cloud ice-crystals. Nat Geosci 2(6):397–400

    Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitations, atmospheric and oceanographic sciences library. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Reitz P, Spindler C, Mentel TF, Poulain L, Wex H, Mildenberger K, Niedermeier D, Hartmann S, Clauss T, Stratmann F, Sullivan RC, DeMott PJ, Petters MD, Sierau B, Schneider J (2011) Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities. Atmos Chem Phys 11(15):7839–7858. doi:10.5194/acp-11-7839-2011

    Google Scholar 

  • Ren C, Mackenzie AR (2005) Cirrus parametrization and the role of ice nuclei. Q J R Meteorol Soc 131(608):1585–1605. doi:10.1256/qj.04.126

    Google Scholar 

  • Rosenfeld D (2006) Aerosols, clouds, and climate. Science 312:1323–1324

    Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci U S A 98(11):5975–5980

    Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Google Scholar 

  • Schladitz A, Müller T, Nowak A, Kandler K, Lieke K, Massling A, Wiedensohler A (2011) In situ aerosol characterization of Cape Verde Part 1: particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol. Tellus B 63:531–548

    Google Scholar 

  • Shaw RA, Durant AJ, Mi Y (2005) Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B 109(20):9865–9868. doi:10.1021/jp0506336

    Google Scholar 

  • Smoydzin L, Teller A, Tost H, Fnais M, Lelieveld J (2012) Impact of mineral dust on cloud formation in a Saharan outflow region. Atmos Chem Phys 12:11383–11393

    Google Scholar 

  • Sokolik IN, Winker DM, Bergametti G, Gillette DA, Carmichael G, Kaufman YJ, Gomes L, Schuetz L, Penner JE (2001) Introduction to a special section: outstanding problems in quantifying the radiative impacts of mineral dust. J Geophys Res 106:18015–18027. doi:10.1029/2000JD900498

    Google Scholar 

  • Sorjamaa R, Laaksonen A (2007) The effect of H2O adsorption on cloud drop activation of insoluble particles: a theoretical framework. Atmos Chem Phys 7:6175–6180

    Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613. doi:10.1038/nature08281

    Google Scholar 

  • Storelvmo T, Hoose C, Eriksson P (2011) Global modeling of mixed-phase clouds: the albedo and lifetime effects of aerosols. J Geophys Res 116, D05207. doi:10.1029/2010jd014724

    Google Scholar 

  • Stoyanova V, Kashchiev D, Kupenova T (1994) Freezing of water droplets seeded with atmospheric aerosols and ice nucleation activity of the aerosols. J Aerosol Sci 25:867–877

    Google Scholar 

  • Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA (2009a) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos Chem Phys 9:3303–3316

    Google Scholar 

  • Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA (2009b) Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Phys Chem Chem Phys 11:7826–7837

    Google Scholar 

  • Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Qafoku O, Laskin A, Roberts GC, Prather KA (2010a) Impact of particle generation method on the apparent hygroscopicity of insoluble particles. Aerosol Sci Technol 44(10):830–846

    Google Scholar 

  • Sullivan RC, Petters MD, DeMott PJ, Kreidenweis SM, Wex H, Niedermeier D, Hartmann S, Clauss T, Stratmann F, Reitz P, Schneider J, Sierau B (2010b) Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos Chem Phys 10(23):11471–11487. doi:10.5194/acp-10-11471-2010

    Google Scholar 

  • Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res 110, D02202

    Google Scholar 

  • Tobo Y, DeMott PJ, Raddatz M, Niedermeier D, Hartmann S, Kreidenweis SM, Stratmann F, Wex H (2012) Impacts of chemical reactivity on ice nucleation of kaolinite particles: a case study of levoglucosan and sulfuric acid. Geophys Res Lett 39(19), L19803. doi:10.1029/2012gl053007

    Google Scholar 

  • Topping D, Connolly P, McFiggans G (2013) Cloud droplet number enhanced by co-condensation of organic vapours. Nat Geosci 6:443–446. doi:10.1038/NGEO1809

    Google Scholar 

  • Trochkine D, Iwasaka Y, Matsuki A, Yamada M, Kim Y-S, Nagatani T, Zhang D, Shi G-Y, Shen Z (2003) Mineral aerosol particles collected in Dunhuang, China, and their comparison to chemically modified particles collected over Japan. J Geophys Res 108(D23):8642. doi:10.1029/2002JD003268

    Google Scholar 

  • Twohy CH, Kreidenweis SM, Eidhammer T, Browell EV, Heymsfield AJ, Bansemer AR, Anderson BE, Chen G, Ismail S, DeMott PJ, Van Den Heever SC (2009) Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys Res Lett 36, L01807. doi:10.1029/2008GL035846

    Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Aerosol Sci 34:1149–1152

    Google Scholar 

  • Vali G (1985) Nucleation terminology. Bull Am Meteorol Soc 66:1426

    Google Scholar 

  • Vali G (1994) Freezing rate due to heterogeneous nucleation. J Atmos Sci 51:1843–1856

    Google Scholar 

  • Vali G (2008) Repeatability and randomness in heterogeneous freezing nucleation. Atmos Chem Phys 8(16):5017–5031

    Google Scholar 

  • Van den Heever SC, Carrió GG, Cotton WR, DeMott PJ, Prenni AJ (2006) Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J Atmos Sci 63:1752–1775

    Google Scholar 

  • Vlasenko A, Sjogren S, Weingartner E, Stemmler K, Gäggeler HW, Ammann M (2006) Effect of humidity on nitric acid uptake to mineral dust aerosol particles. Atmos Chem Phys 6:2147–2160

    Google Scholar 

  • Westbrook CD, Illingworth AJ (2013) The formation of ice in a long-lived supercooled layer cloud. Q J R Meteorol Soc, n/a-n/a. doi:10.1002/qj.2096

  • Wex H, DeMott PJ, Tobo Y, Hartmann S, Rösch M, Clauss T, Tomsche L, Niedermeier D, Stratmann F (2013) Kaolinite particles as ice nuclei: learning from the use of different types of kaolinite and different coatings. Atmos Chem Phys Discuss 13(11):30311–30348. doi:10.5194/acpd-13-30311-2013

    Google Scholar 

  • Wheeler MJ, Bertram AK (2012) Deposition nucleation on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle. Atmos Chem Phys 12(2):1189–1201. doi:10.5194/acp-12-1189-2012

    Google Scholar 

  • Wise ME, Baustian KJ, Koop T, Freedman MA, Jensen EJ, Tolbert MA (2012) Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere. Atmos Chem Phys 12(2):1121–1134. doi:10.5194/acp-12-1121-2012

    Google Scholar 

  • Woodcock AH (1950) Condensation nuclei and precipitation. J Meteorol 7:161–162

    Google Scholar 

  • Wright TP, Petters MD (2013) The role of time in heterogeneous freezing nucleation. J Geophys Res Atmos 118(9):3731–3743. doi:10.1002/jgrd.50365

    Google Scholar 

  • Wright TP, Petters MD, Hader JD, Morton T, Holder AL (2013) Minimal cooling rate dependence of ice nuclei activity in the immersion mode. J Geophys Res Atmos 118(18):10535–10543. doi:10.1002/jgrd.50810

    Google Scholar 

  • Xue H, Feingold G (2006) Large eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J Atmos Sci 63:1605–1622

    Google Scholar 

  • Yakobi-Hancock JD, Ladino LA, Abbatt JPD (2013) Feldspar minerals as efficient deposition ice nuclei. Atmos Chem Phys 13(22):11175–11185. doi:10.5194/acp-13-11175-2013

    Google Scholar 

  • Yamashita K, Murakami M, Hashimoto A, Tajiri T (2011) CCN ability of Asian mineral dust particles and their effects on cloud droplet formation. J Meteorol Soc Jpn 89(5):581–587

    Google Scholar 

  • Yin Y, Wurzler S, Levin Z, Reisin T (2002) Interactions of mineral dust particles and clouds: effects on precipitation and cloud optical properties. J Geophys Res 107(D23):4724. doi:10.1029/2001JD001544

    Google Scholar 

  • Zhang H, McFarquhar GM, Cotton WR, Deng Y (2009) Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys Res Lett 36, L06802. doi:10.1029/2009GL037276

    Google Scholar 

  • Zhao DF, Buchholz A, Mantel TF, Müler K-P, Borchardt J, Kiendler-Scharr A, Spindler C, Tillmann R, Trimborn A, Zhu T, Wahner A (2010) Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first determination of hygroscopic and cloud condensation nuclei activation properties. Atmos Chem Phys 10:8601–8616

    Google Scholar 

  • Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: electron microscopic characterization. Geochim Cosmochim Acta 70(18):4600–4616. doi:10.1016/j.gca.2006.07.013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Nenes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nenes, A., Murray, B., Bougiatioti, A. (2014). Mineral Dust and its Microphysical Interactions with Clouds. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_12

Download citation

Publish with us

Policies and ethics