Skip to main content

Electrical and Thermal Conductivity

  • Chapter
  • First Online:

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

After a Sect. 1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses (1.2), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect. 1.3.2, Dielectrics Sects. 1.3.3 and 1.3.4 and Nanocomposites Sect. 1.3.5. In Sect. 1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Sciver, S.W.: Helium Cryogenics. Springer, New York (2012)

    Google Scholar 

  2. Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications. Springer, New York (2004)

    Google Scholar 

  3. Ziman, J. (ed.): Electrons and Phonons. Clarendon Press, Oxford (1972)

    Google Scholar 

  4. Rosenberg, H.M. (ed.): The Solid State. Clarendon Press, Oxford (1984)

    Google Scholar 

  5. Ashcroft, N.W., Mermin, N.D.: Solid State Physics Holt. Rinehart and Winston, New York (1976)

    Google Scholar 

  6. Matthiessen, A., Vogt, C.: On the influence of temperature on the electric conducting-power of alloys. Philos. Trans. R. Soc. Lond. 154, 167–200 (1864)

    Article  Google Scholar 

  7. Ventura, G., Risegari, L.: The Art of Cryogenics: Low-Temperature Experimental Techniques. Elsevier, Amsterdam (2007)

    Google Scholar 

  8. Olson, J.: Thermal conductivity of some common cryostat materials between 0.05 and 2 K. Cryogenics 33(7), 729–731 (1993)

    Article  ADS  Google Scholar 

  9. DeGarmo, E.P., Black, J.T., Kohser, R.A., Klamecki, B.E.: Materials and Process in Manufacturing. Macmillan Publishing Company, New York (1984)

    Google Scholar 

  10. Moiseeva, N.: Methods of constructing an individual calibration characteristic for working platinum resistance thermometers. Meas. Tech. 44(5), 502–507 (2001)

    Article  Google Scholar 

  11. Woodcraft, A.L.: Zirconium copper—a new material for use at low temperatures? In: AIP Conference Proceedings 2006, p. 1691 (2006)

    Google Scholar 

  12. Powell, R., Fickett, F.: Cryogenic properties of copper vol. 1. In: Proceedings of INCRA REP (1979)

    Google Scholar 

  13. Clark, A., Childs, G., Wallace, G.: Electrical resistivity of some engineering alloys at low temperatures. Cryogenics 10(4), 295–305 (1970)

    Article  ADS  Google Scholar 

  14. Ledbetter, H., Reed, R., Clark, A.: Materials at Low Temperatures, vol. 1. American Society for Metals, Metals Park, OH (1983)

    Google Scholar 

  15. Meaden, G.T.: Electrical Resistance of Metals, vol. 2. Plenum press, New York (1965)

    Google Scholar 

  16. Hall, L.: Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0 to 273 K (1968). http://www.getcited.org/pub/101292840

  17. Matula, R.A.: Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147 (1979)

    Article  ADS  Google Scholar 

  18. Haller, E.: Advanced far-infrared detectors. Infrared Phys. Technol. 35(2), 127–146 (1994)

    Article  ADS  Google Scholar 

  19. Andeen, C.G., Hagerling, C.W.: High Precision Capacitance Bridge. In. Andeen-Hagerling Inc., Ohio (1988)

    Google Scholar 

  20. Hayakawa, R., Tanabe, Y., Wada, Y.: A thermodynamic theory of mechanical relaxation due to energy transfer between strain-sensitive and strain-insensitive modes in polymers. J. Macromol. Sci. Part B Phys. 8(3–4), 445–461 (1973)

    Article  Google Scholar 

  21. Powles, J.: Nuclear magnetic resonance absorption in polymethyl methacrylate and polymethyl α-chloroacrylate. J. Polym. Sci. 22(100), 79–93 (1956)

    Article  ADS  Google Scholar 

  22. Odajima, A., Woodward, A., Sauer, J.: Proton magnetic resonance of some α-methyl group-containing polymers and their monomers. J. Polym. Sci. 55(161), 181–196 (1961)

    Article  ADS  Google Scholar 

  23. Tanabe, Y., Hirose, J., Okano, K., Wada, Y.: Methyl group relaxations in the glassy phase of polymers. Polymer J 1, 107–115 (1970)

    Article  Google Scholar 

  24. Armeniades, C., Baer, E.: Structural origin of the cryogenic relaxations in poly (ethylene terephthalate). J. Polym. Sci. Part A-2: Polym. Phys. 9(8), 1345–1369 (1971)

    Article  ADS  Google Scholar 

  25. Hiltner, A., Baer, E.: A dislocation mechanism for cryogenic relaxations in crystalline polymers. Polym. J. 3(3), 378–388 (1972)

    Article  Google Scholar 

  26. Arisawa, H., Yano, O., Wada, Y.: Dielectric loss of poly (vinylidene fluoride) at low temperatures and effect of poling on the low temperature loss. Ferroelectrics 32(1), 39–41 (1981)

    Article  Google Scholar 

  27. Yano, O., Wada, Y.: Dynamic mechanical and dielectric relaxations of polystyrene below the glass temperature. J. Polym. Sci. Part A-2: Polym. Phys. 9(4), 669–686 (1971)

    Article  ADS  Google Scholar 

  28. Shimizu, K., Yano, O., Wada, Y.: Dielectric relaxations in polymers with pendent phenyl or pyridine groups at temperatures from 4 °K to 80 °K. J. Polym. Sci. Polym. Phys. Ed. 13(12), 2357–2368 (1975)

    Article  ADS  Google Scholar 

  29. Yano, O., Yamaoka, H.: Cryogenic properties of polymers. Prog. Polym. Sci. 20(4), 585–613 (1995)

    Article  Google Scholar 

  30. Barucci, M., Gottardi, E., Peroni, I., Ventura, G.: Low temperature thermal conductivity of Kapton and Upilex. Cryogenics 40(2), 145–147 (2000)

    Article  ADS  Google Scholar 

  31. Berman, R. (ed.) Thermal Conduction in Solids. Oxford University Press, Oxford (1976)

    Google Scholar 

  32. Franz, R., Wiedemann, G.: Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165(8), 497–531 (1853)

    Article  Google Scholar 

  33. Kittel, C. (ed.): Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)

    Google Scholar 

  34. Gloos, K., Mitschka, C., Pobell, F., Smeibidl, P.: Thermal conductivity of normal and superconducting metals. Cryogenics 30(1), 14–18 (1990)

    Article  ADS  Google Scholar 

  35. Hust, J., Sparks, L.: Lorenz Ratios of Technically Important Metals and Alloys, vol. 634. US Government printing office, Washington (1973)

    Google Scholar 

  36. Pobell, F.: Matter and Methods at Low Temperatures. Springer, Berlin (2007)

    Google Scholar 

  37. Callaway, J., Wang, C.: Energy bands in ferromagnetic iron. Phys. Rev. B 16(5), 2095 (1977)

    Article  ADS  Google Scholar 

  38. Woodcraft, A.L., Barucci, M., Hastings, P.R., Lolli, L., Martelli, V., Risegari, L., Ventura, G.: Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: finding a replacement for AGOT graphite. Cryogenics 49(5), 159–164 (2009)

    Article  ADS  Google Scholar 

  39. White, G., Meeson, P.: Experimental Techniques in Low-Temperature Physics. Clarendon Press, Oxford (2002)

    Google Scholar 

  40. Zaitlin, M.P., Anderson, A.: Phonon thermal transport in noncrystalline materials. Phys. Rev. B 12(10), 4475 (1975)

    Article  ADS  Google Scholar 

  41. Anderson, P.W., Halperin, B., Varma, C.M.: Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25(1), 1–9 (1972)

    Article  ADS  MATH  Google Scholar 

  42. Phillips, W.: Tunneling states in amorphous solids. J. Low Temp. Phys. 7(3–4), 351–360 (1972)

    Article  ADS  Google Scholar 

  43. Lubchenko, V., Wolynes, P.G.: Intrinsic quantum excitations of low temperature glasses. Phys. Rev. Lett. 87(19), 195901 (2001)

    Article  ADS  Google Scholar 

  44. Lubchenko, V., Wolynes, P.G.: The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proc. Natl. Acad. Sci. 100(4), 1515–1518 (2003)

    Article  ADS  Google Scholar 

  45. Talon, C., Zou, Q., Ramos, M., Villar, R., Vieira, S.: Low-temperature specific heat and thermal conductivity of glycerol. Phys. Rev. B 65(1), 012203 (2001)

    Article  ADS  Google Scholar 

  46. Parshin, D.: Interactions of soft atomic potentials and universality of low-temperature properties of glasses. Phys. Rev. B 49(14), 9400 (1994)

    Article  ADS  Google Scholar 

  47. Buchenau, U., Galperin, Y.M., Gurevich, V., Parshin, D., Ramos, M., Schober, H.: Interaction of soft modes and sound waves in glasses. Phys. Rev. B 46(5), 2798 (1992)

    Article  ADS  Google Scholar 

  48. Reese, W.: Thermal properties of polymers at low temperatures. J. Macromol. Sci. Chem. 3(7), 1257–1295 (1969)

    Article  Google Scholar 

  49. Choy, C., Greig, D.: The low temperature thermal conductivity of isotropic and oriented polymers. J. Phys. C: Solid State Phys. 10(2), 169 (1977)

    Article  ADS  Google Scholar 

  50. Pobell, F. (ed.) Matter and Methods at Low Temperature, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  51. Cahill, D.G., Watson, S.K., Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131 (1992)

    Article  ADS  Google Scholar 

  52. Roy, R., Komarneni, S., Parker, J., Thomas, G.: Nanophase and Nanocomposite Materials. Mater. Res. Soci. 241 (1984)

    Google Scholar 

  53. Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  54. Advani, S.G.: Processing and Properties of Nanocomposites. World Scientific, Singapore (2007)

    Google Scholar 

  55. Green, C., Vaughan, A.: Nanodielectrics-How Much Do We Really Understand?[Feature Article]. IEEE Electr. Insul. Mag. 24(4), 6–16 (2008)

    Article  Google Scholar 

  56. Tait, H.: 5 Thousand Years of Glass. University of Pennsylvania Press, Philadelphia (2004)

    Google Scholar 

  57. Vaughan, A.: Raman nanotechnology-the Lycurgus Cup-letter to the editor. IEEE Electr. Insul. Mag. 24(6), 4 (2008)

    Google Scholar 

  58. Andritsch, T.: Epoxy based nanocomposites for high voltage DC applications. Synthesis, dielectric properties and space charge dynamics. PhD thesis, Delft University of Technology (2010)

    Google Scholar 

  59. Gupta, R.K., Kennel, E., Kim, K.-J.: Polymer Nanocomposites Handbook. CRC Press (2010)

    Google Scholar 

  60. Mark, J., Wen, J.: Inorganic‐organic composites containing mixed‐oxide phases. In: Macromolecular Symposia 1995, pp. 89–96. Wiley Online Library (1995)

    Google Scholar 

  61. Carter, L.W., Hendricks, J.G., Bolley, D.S.: U.S. Patent 2.531.396. USA Patent

    Google Scholar 

  62. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  63. Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997)

    Article  ADS  Google Scholar 

  64. Twardowski, T.E., Twardowski, T.A.: Introduction to Nanocomposite Materials: Properties, Processing, Characterization. DEStech publications, Inc U.S.A (2007)

    Google Scholar 

  65. Liao, J., Ren, Y., Xiao, T., Mai, Y., Yu, Z.: Polymer Nanocomposites. Woodhead Publishing Limited, Cambridge (2006)

    Google Scholar 

  66. Pissis, P., Kotsilkova, R.: Thermoset Nanocomposites for Engineering Applications. Rapra Technology, UK (2007)

    Google Scholar 

  67. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R.: Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites–a review. Prog. Polym, Sci (2013)

    Google Scholar 

  68. Kurimoto, M., Watanabe, H., Kato, K., Hanai, M., Hoshina, Y., Takei, M., Okubo, H.: Dielectric properties of epoxy/alumina nanocomposite influenced by particle dispersibility. In: Electrical Insulation and Dielectric Phenomena, 2008. CEIDP 2008. IEEE Annual Report Conference on 2008, pp. 706–709 (2008)

    Google Scholar 

  69. Nelson, J.K.: Dielectric Polymer Nanocomposites. Springer, New York (2010). http://link.springer.com/book/10.1007/978-1-4419-1591-7

  70. Singha, S., Thomas, M.J.: Polymer composite/nanocomposite processing and its effect on the electrical properties. In: Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference on 2006, pp. 557–560 (2006)

    Google Scholar 

  71. Yung, K., Wang, J., Yue, T.: Thermal management for boron nitride filled metal core printed circuit board. J. Compos. Mater. 42(24), 2615–2627 (2008)

    Article  ADS  Google Scholar 

  72. Levering, A.W.: Interphases in Zirconium Silicate Filled High Density Polyethylene and Polypropylene (1995)

    Google Scholar 

  73. Schulz, M.J., Kelkar, A.D., Sundaresan, M.J.: Nanoengineering of Structural, Functional and Smart Materials. CRC Press, Boca Raton (2005)

    Google Scholar 

  74. Capek, I.: Nanocomposite Structures and Dispersions, vol. 27. Access Online via Elsevier (2006)

    Google Scholar 

  75. Roy, M., Nelson, J., MacCrone, R., Schadler, L., Reed, C., Keefe, R.: Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12(4), 629–643 (2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1511089&tag=1

    Article  Google Scholar 

  76. Smith, R., Liang, C., Landry, M., Nelson, J., Schadler, L.: The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15(1), 187–196 (2008)

    Article  Google Scholar 

  77. Xanthos, M.: Polymers and Polymer Composites. Functional Fillers for Plastics, pp. 1–16. Wiley, New York (2005)

    Google Scholar 

  78. Godovsky, Y.K.: Thermodynamic Behavior of Solid Polymers in Plastic Deformation and Cold Drawing. Springer, Berlin (1992)

    Google Scholar 

  79. Tekce, H.S., Kumlutas, D., Tavman, I.H.: Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 26(1), 113–121 (2007)

    Article  ADS  Google Scholar 

  80. Hansen, D., Bernier, G.: Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity. Polym. Eng. Sci. 12(3), 204–208 (1972)

    Article  Google Scholar 

  81. Mark, J.E.: Physical Properties of Polymers Handbook. Springer, Berlin (2007). http://link.springer.com/book/10.1007/978-0-387-69002-5

  82. Kesava Reddy, M., Subramanyam Reddy, K., Yoga, K., Prakash, M., Narasimhaswamy, T., Mandal, A., Lobo, N.P., Ramanathan, K., Rao, D.S., Krishna Prasad, S.: Structural characterization and molecular order of rodlike mesogens with three-and four-ring core by XRD and 13C NMR spectroscopy. J. Phys. Chem. B 117(18), 5718–5729 (2013)

    Google Scholar 

  83. Ekstrand, L., Kristiansen, H., Liu, J.: Characterization of thermally conductive epoxy nano composites. In: Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on 2005, pp. 35–39 (2005)

    Google Scholar 

  84. Kim, W., Bae, J.W., Choi, I.D., Kim, Y.S.: Thermally conductive EMC (Epoxy Molding Compound) for microelectronic encapsulation. Polym. Eng. Sci. 39(4), 756–766 (1999)

    Article  MathSciNet  Google Scholar 

  85. Hsieh, C.Y., Chung, S.L.: High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J. Appl. Polym. Sci. 102(5), 4734–4740 (2006)

    Article  Google Scholar 

  86. Wong, C., Bollampally, R.S.: Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans. Adv. Packag. 22(1), 54–59 (1999)

    Article  Google Scholar 

  87. Okamoto, T., Sawa, F., Tomimura, T., Tanimoto, N., Hishida, M., Nakamura, S.: Properties of high-thermal conductive composite with two kinds of fillers. In: Properties and Applications of Dielectric Materials, 2007. Proceedings of the 7th International Conference on 2003, pp. 1142–1145 (2007)

    Google Scholar 

  88. Xu, Y., Chung, D.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interfaces 7(4), 243–256 (2000)

    Article  Google Scholar 

  89. Han, Z., Wood, J., Herman, H., Zhang, C., Stevens, G.: Thermal properties of composites filled with different fillers. In: Electrical Insulation, 2008. ISEI 2008. Conference Record of the 2008 IEEE International Symposium on 2008, pp. 497–501 (2008)

    Google Scholar 

  90. McCullough, R.L.: Generalized combining rules for predicting transport properties of composite materials. Compos. Sci. Technol. 22(1), 3–21 (1985)

    Article  Google Scholar 

  91. Progelhof, R., Throne, J., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym. Eng. Sci. 16(9), 615–625 (1976)

    Article  Google Scholar 

  92. Tavman, I.: Effective thermal conductivity of isotropic polymer composites. Int. Commun. Heat Mass Transf. 25(5), 723–732 (1998)

    Article  Google Scholar 

  93. Agarwal, S., Khan, M.M.K., Gupta, R.K.: Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 48(12), 2474–2481 (2008)

    Article  Google Scholar 

  94. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press, Oxford (1881)

    Google Scholar 

  95. Pal, R.: On the Lewis-Nielsen model for thermal/electrical conductivity of composites. Compos. A Appl. Sci. Manuf. 39(5), 718–726 (2008)

    Article  Google Scholar 

  96. Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24(5), 575 (1924)

    Article  ADS  Google Scholar 

  97. Bruggeman, V.D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416(7), 636–664 (1935)

    Article  Google Scholar 

  98. Lee, E.S., Lee, S.M., Shanefield, D.J., Cannon, W.R.: Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J. Am. Ceram. Soc. 91(4), 1169–1174 (2008)

    Article  Google Scholar 

  99. Hill, R.F., Supancic, P.H.: Thermal conductivity of platelet-filled polymer composites. J. Am. Ceram. Soc. 85(4), 851–857 (2002)

    Article  Google Scholar 

  100. Stevens, G., Herman, H., Han, J., Wood, J., Mitchell, A., Thomas, J.: The role of nano and micro fillers in high thermal conductivity electrical insulation systems. In: 11th Insucon Conference, Birmingham, UK 2009, pp. 286–291

    Google Scholar 

  101. Tsao, G.T.-N.: Thermal conductivity of two-phase materials. Ind. Eng. Chem. 53(5), 395–397 (1961)

    Article  Google Scholar 

  102. Cheng, S., Vachon, R.: The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int. J. Heat Mass Transf. 12(3), 249–264 (1969)

    Article  Google Scholar 

  103. Sundstrom, D.W., Lee, Y.D.: Thermal conductivity of polymers filled with particulate solids. J. Appl. Polym. Sci. 16(12), 3159–3167 (1972)

    Article  Google Scholar 

  104. Hamilton, R.: Thermal conductivity of two phase materials. Dissertation, University of Oklahoma (1960)

    Google Scholar 

  105. Hamilton, R., Crosser, O.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Article  Google Scholar 

  106. Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J. Appl. Phys. 58(7), 2478–2486 (1985)

    Article  ADS  Google Scholar 

  107. Meredith, R.E., Tobias, C.W.: Conduction in heterogeneous systems. Advances in electrochemistry and electrochemical engineering 2(II), 15–47 (1962)

    Google Scholar 

  108. Nielsen, L.E.: Mechanical properties of particulate-filled systems. J. Compos. Mater. 1(1), 100–119 (1967)

    Google Scholar 

  109. Lewis, T., Nielsen, L.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14(6), 1449–1471 (1970)

    Article  Google Scholar 

  110. Landel, R.F.: Mechanical Properties of Polymers and Composites, vol. 90. CRC Press, (1994)

    Google Scholar 

  111. Halpin, J.: Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3(4), 732–734 (1969)

    Google Scholar 

  112. Agari, Y., Uno, T.: Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 30(5), 2225–2235 (1985)

    Article  Google Scholar 

  113. Agari, Y., Uno, T.: Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32(7), 5705–5712 (1986)

    Article  Google Scholar 

  114. Agari, Y., Ueda, A., Nagai, S.: Thermal conductivity of a polymer composite. J. Appl. Polym. Sci. 49(9), 1625–1634 (1993)

    Article  Google Scholar 

  115. Russell, H.: Principles of heat flow in porous insulators*. J. Am. Ceram. Soc. 18(1–12), 1–5 (1935)

    Article  Google Scholar 

  116. Topper, L.: Industrial design data—analysis of porous thermal insulating materials. Ind. Eng. Chem. 47(7), 1377–1379 (1955)

    Article  Google Scholar 

  117. Jefferson, T., Witzell, O., Sibbitt, W.: Thermal conductivity of graphite—silicone oil and graphite-water suspensions. Ind. Eng. Chem. 50(10), 1589–1592 (1958)

    Article  Google Scholar 

  118. Springer, G.S., Tsai, S.W.: Thermal conductivities of unidirectional materials. J. Compos. Mater. 1(2), 166–173 (1967)

    Article  ADS  Google Scholar 

  119. Budiansky, B.: Thermal and thermoelastic properties of isotropic composites. J. Compos. Mater. 4(3), 286–295 (1970)

    Article  ADS  Google Scholar 

  120. Baschirow, A., Selenew, J.: Thermal conductivity of composites. Plaste Kaut 23, 656 (1976)

    Google Scholar 

  121. McGee, S., McGullough, R.: Combining rules for predicting the thermoelastic properties of particulate filled polymers, polymers, polyblends, and foams. Polym. Compos. 2(4), 149–161 (1981)

    Article  Google Scholar 

  122. Privalko, V., Novikov, V.: Model treatments of the heat conductivity of heterogeneous polymers. In: Thermal and Electrical Conductivity of Polymer Materials, pp. 31–77. Springer (1995)

    Google Scholar 

  123. Dul’Nev, G., Novikov, V.: Conductivity determination for a filled heterogeneous system. J. Eng. Phys. Thermophys. 37(4), 1184–1187 (1979)

    Article  Google Scholar 

  124. Heron, J.-S., Souche, G.M., Ong, F.R., Gandit, P., Fournier, T., Bourgeois, O.: Temperature modulation measurements of the thermal properties of nanosystems at low temperatures. J. Low Temp. Phys. 154(5–6), 150–160 (2009)

    Article  ADS  Google Scholar 

  125. Huang, C., Fu, S., Zhang, Y., Lauke, B., Li, L., Ye, L.: Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics 45(6), 450–454 (2005)

    Article  ADS  Google Scholar 

  126. Martelli, V., Toccafondi, N., Ventura, G.: Low-temperature thermal conductivity of Nylon-6/Cu nanoparticles. Physica B 405(20), 4247–4249 (2010)

    Article  ADS  Google Scholar 

  127. Batchelor, G., O’Brien, R.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A Math. Phys. Sci. 355(1682), 313–333 (1977)

    Article  ADS  Google Scholar 

  128. Risegari, L., Barucci, M., Bucci, C., Fafone, V., Gorla, P., Giuliani, A., Olivieri, E., Pasca, E., Pirro, S., Quintieri, L.: Use of good copper for the optimization of the cooling down procedure of large masses. Cryogenics 44(3), 167–170 (2004)

    Article  ADS  Google Scholar 

  129. Van Sciver, S.W., Nellis, M.N., Pfotenhauer, J.: Thermal and electrical contact Conductance between metals at low temperatures. In: Proceedings Space Cryogenics Workshop 1984, Berlin (DE) (1984)

    Google Scholar 

  130. Peterson, R., Anderson, A.: The Kapitza thermal boundary resistance. J. Low Temp. Phys. 11(5–6), 639–665 (1973)

    Article  ADS  Google Scholar 

  131. Little, W.: The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37(3), 334–349 (1959)

    Article  ADS  Google Scholar 

  132. Radebaugh, R.: Thermal conductance of indium solder joints at low temperatures. Rev. Sci. Instrum. 48, 93 (1977)

    Article  ADS  Google Scholar 

  133. Gmelin, E., Asen-Palmer, M., Reuther, M., Villar, R.: Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D Appl. Phys. 32(6), R19 (1999)

    Article  ADS  Google Scholar 

  134. Didschuns, I., Woodcraft, A., Bintley, D., Hargrave, P.: Thermal conductance measurements of bolted copper to copper joints at sub-Kelvin temperatures. Cryogenics 44(5), 293–299 (2004)

    Article  ADS  Google Scholar 

  135. Bintley, D., Woodcraft, A.L., Gannaway, F.C.: Millikelvin thermal conductance measurements of compact rigid thermal isolation joints using sapphire–sapphire contacts, and of copper and beryllium–copper demountable thermal contacts. Cryogenics 47(5), 333–342 (2007)

    Article  ADS  Google Scholar 

  136. Fritzsche, H.: Resistivity and hall coefficient of antimony-doped germanium at low temperatures. J. Phys. Chem. Solids 6(1), 69–80 (1958)

    Article  ADS  Google Scholar 

  137. Rosenberg, H.M.: The thermal conductivity of metals at low temperatures. Philos. Trans. of the R. Soc. A Math. Phys. Sci. 247(933), 441–497 (1955)

    Google Scholar 

  138. Berman, R., Foster, E., Ziman, J.: The thermal conductivity of dielectric crystals: the effect of isotopes. Proc. R. Soc. Lond. A 237(1210), 344–354 (1956)

    Article  ADS  Google Scholar 

  139. Nathan, B., Lou, L., Tait, R.: Low temperature thermal properties of mixed crystal KBr KI. Solid State Commun. 19(7), 615–617 (1976)

    Article  ADS  Google Scholar 

  140. Guckel, H.: Silicon microsensors: construction, design and performance. Microelectron. Eng. 15(1), 387–398 (1991)

    Article  Google Scholar 

  141. Locatelli, M., Arnaud, D., Routin, M.: Thermal conductivity of some insulating materials materials below 1 K. Cryogenics 16(6), 374–375 (1976)

    Article  ADS  Google Scholar 

  142. Morelli, D., Doll, G., Heremans, J., Peacor, S., Uher, C., Dresselhaus, M., Cassanho, A., Gabbe, D., Jenssen, H.: Thermal conductivity of single crystal lanthanum cuprates at very low temperature. Solid State Commun. 77(10), 773–776 (1991)

    Article  ADS  Google Scholar 

  143. Stephens, R.: Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys. Rev. B 8(6), 2896 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  144. Fukushima, K., Takahashi, H., Takezawa, Y., Hattori, M., Itoh, M., Yonekura, M.: High thermal conductive epoxy resins with controlled high-order structure [electrical insulation applications]. In: Electrical Insulation and Dielectric Phenomena, 2004. CEIDP’04. 2004 Annual Report Conference on 2004, pp. 340–347 (2004)

    Google Scholar 

  145. Scott, T.A., de Bruin, J., Giles, M.M., Terry, C.: Low-temperature thermal properties of nylon and polyethylene. J. Appl. Phys. 44(3), 1212–1216 (1973)

    Article  ADS  Google Scholar 

  146. Ekin, J. (ed.) Experimental Techniques for Low Temperature Measurements. Oxford University Press, Oxford (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). Electrical and Thermal Conductivity. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_7

Download citation

Publish with us

Policies and ethics