Skip to main content

Heat Capacity

  • Chapter
  • First Online:
  • 2681 Accesses

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

Specific heat provides a link among the many solid state theories; vice versa these theories can also be used to estimate the specific heat of materials. From a practical point of view, the knowledge of the specific heat of technically important materials is often fundamental in the design of instruments and systems which have to work in the low temperature regime. Since cryogenics is presently used in research, aerospace, industry and energy production and storage, specific heat data for commonly used materials are mandatory. In this chapter theories about contributions to specific heat are reported: lattice specific heat (Sect. 1.2), electronic specific heat in normal (Sect. 1.3) and superconducting (Sect. 1.4) materials, contributions from transitions and defects (Sect. 1.5), magnetic specific heat (Sect. 1.6), contributions present in amorphous materials (Sect. 1.7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reed, R.P., Clark, A.F.: Materials at Low Temperatures. American Society for Metals, Metals Park, US (1983)

    Google Scholar 

  2. DiMarzio, E., Dowell, F.: Theoretical prediction of the specific heat of polymer glasses. J. Appl. Phys. 50(10), 6061–6066 (1979)

    Article  ADS  Google Scholar 

  3. Sakiadis, B.C., Coates, J.: Prediction of specific heat of organic liquids. AlChE J. 2(1), 88–93 (1956)

    Article  Google Scholar 

  4. Turney, J.E.: Predicting Phonon Properties and Thermal Conductivity Using Anharmonic Lattice Dynamics Calculations. Carnegie Mellon University, Pittsburgh (2009)

    Google Scholar 

  5. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976)

    Google Scholar 

  6. Rosenberg, H.M. (ed.): The Solid State. Clarendon Press, Oxford (1984)

    Google Scholar 

  7. Cezairliyan, A., Ho, C.Y.O. (eds.): Specific Heat of Solids, ed. by C.Y.O. Ho and A. Cezairliyan. Hemisphere Publishing Corp., New York (1988)

    Google Scholar 

  8. Gopal, E.S.R. (ed.): Specific Heats at Low Temperatures. Plenum Press, New York (1966)

    Google Scholar 

  9. Barron, T.H.K., White, G.K. (eds.): Heat Capacity and Thermal Expansion at Low Temperatures. Plenum Press, New York (1999)

    Google Scholar 

  10. Kittel, C. (ed.): Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)

    Google Scholar 

  11. Ibach, H., Lüth, H. (eds.): Solid-State Physics, an Introduction to Theory and Experiments. Springer, Berlin (1991)

    Google Scholar 

  12. Ziman, J. (ed.): Electrons and Phonons. Clarendon Press, Oxford (1972)

    Google Scholar 

  13. McClintock, P.V.E., Meredith, D.J., Wigmore, J.K. (eds.): Matter at Low Temperatures. Blackie, London (1984)

    Google Scholar 

  14. Ventura, G., Risegari, L.: The Art of Cryogenics: Low-Temperature Experimental Techniques. Elsevier, Amsterdam (2007)

    Google Scholar 

  15. Petit, A.T., Dulong, P.L.: Recherches sur quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique 10, 395–413 (1819)

    Google Scholar 

  16. Corruccini, R.J., Gniewek, J.J.: Specific Heats and Enthalpies of Technical Solids at Low Temperatures: A Compilation from the Literature. National Bureau of Standards, Washington, DC (1960)

    Google Scholar 

  17. Chang, S.S.: Heat capacity and thermodynamic properties of polyvinylchloride. J. Res. Natl. Bur. Stand. 82, 9–17 (1977)

    Article  Google Scholar 

  18. Sirdeshmukh, D.B., Sirdeshmukh, L., Subhadra, K.: Atomistic Properties of Solids, vol. 147. Springer, Berlin (2011)

    Google Scholar 

  19. Rosen, M., Kalir, D., Klimker, H.: Single crystal elastic constants and magnetoelasticity of holmium from 4.2 to 300 K. J. Phys. Chem. Solids 35(9), 1333–1338 (1974)

    Article  ADS  Google Scholar 

  20. Klein, M., Goldman, V., Horton, G.: Thermodynamic properties of solid Ar, Kr and Xe based upon a short range central force and the improved self-consistent phonon scheme. J. Phys. Chem. Solids 31(11), 2441–2452 (1970)

    Article  ADS  Google Scholar 

  21. Finegold, L., Phillips, N.E.: Low-temperature heat capacities of solid argon and krypton. Phys. Rev. 177(3), 1383 (1969)

    Article  ADS  Google Scholar 

  22. Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24(7), 909–917 (1963)

    Article  ADS  Google Scholar 

  23. Somasundari, C., Pillai, N.N.: Debye temperature calculation from various experimental methods for—grown from aqueous solution. IOSR J. Appl. Phys. (IOSR-JAP) 3(5), 1–7 (2013). http:\\www.iosrjournals.org

  24. Phillips, N.E.: Low-temperature heat capacity of metals. Crit. Rev. Solid State Mater. Sci. 2(4), 467–553 (1971)

    Article  Google Scholar 

  25. Lounasmaa, O.: Specific heat of holmium metal between 0.38 and 4.2 K. Phys. Rev. 128(3), 1136 (1962)

    Article  ADS  Google Scholar 

  26. Lounasmaa, O.: Specific heat of lutetium metal between 0.38 and 4 K. Phys. Rev. 133(1A), A219 (1964)

    Article  ADS  Google Scholar 

  27. Lounasmaa, O.: Specific heat of gadolinium and ytterbium metals between 0.4 and 4 K. Phys. Rev. 129(6), 2460 (1963)

    Article  ADS  Google Scholar 

  28. Lounasmaa, O.: Specific heat of samarium metal between 0.4 and 4 K. Phys. Rev. 126(4), 1352 (1962)

    Article  ADS  Google Scholar 

  29. Lounasmaa, O.: Specific heat of thulium metal between 0.38 and 3.9 K. Phys. Rev. 134(6A), A1620 (1964)

    Article  ADS  Google Scholar 

  30. Lounasmaa, O.: Specific heat of praseodymium and neodymium metals between 0.4 and 4 K. Phys. Rev. 133(1A), A211 (1964)

    Article  ADS  Google Scholar 

  31. Lounasmaa, O.: Specific heat of cerium and europium metals between 0.4 and 4 K. Phys. Rev. 133(2A), A502 (1964)

    Article  ADS  Google Scholar 

  32. Lounasmaa, O., Guenther, R.: Specific heat of dysprosium metal between 0.4 and 4 K. Phys. Rev. 126(4), 1357 (1962)

    Article  ADS  Google Scholar 

  33. Lounasmaa, O., Roach, P.R.: Specific heat of terbium metal between 0.37 and 4.2 K. Phys. Rev. 128(2), 622 (1962)

    Article  ADS  Google Scholar 

  34. Dreyfus, B., Goodman, B., Lacaze, A., Trolliet, G.: The specific heat of rare earth metals between 0.5 and 4 K. Compt. Rend. 253, 1764–1766 (1961)

    Google Scholar 

  35. Peruzzi, A., Gottardi, E., Pavese, F., Peroni, I., Ventura, G.: Investigation of the titanium superconducting transition as a temperature reference point below 0.65 K. Metrologia 37(3), 229 (2000)

    Article  ADS  Google Scholar 

  36. Van der Hoeven Jr, B., Keesom, P.: Specific heat of mercury and thallium between 0.35 and 4.2 K. Phys. Rev. 135(3A), A631 (1964)

    Article  Google Scholar 

  37. Tilley, D.R., Tilley, J.: Superfluidity and Superconductivity. CRC Press, Boca Raton (1990)

    Google Scholar 

  38. Biondi, M.A., Forrester, A.T., Garfunkel, M.P., Satterthwaite, C.B.: Experimental evidence for an energy gap in superconductors. Rev. Mod. Phys. 30(4), 1109–1136 (1958)

    Article  ADS  Google Scholar 

  39. Phillips, N.E., Lambert, M.H., Gardner, W.R.: Lattice heat capacity of superconducting mercury and lead. Rev. Mod. Phys. 36(1), 131–134 (1964)

    Article  ADS  Google Scholar 

  40. Tinkham, M. (ed.): Introduction to Superconductivity. McGraw-Hill, New York (1975)

    Google Scholar 

  41. Rose-Innes, A.C., Rhoderick, E.H. (eds.): Introduction to Superconductivity. Pergamon Press, London (1977)

    Google Scholar 

  42. Phillips, N.E.: Heat capacity of aluminium between 0.1 and 4.0 K. Phys. Rev. 114(3), 676–685 (1959)

    Article  ADS  Google Scholar 

  43. Pobell, F.: Matter and methods at low temperatures. Springer, Berlin (2007)

    Google Scholar 

  44. Zemansky, M.W. (ed.): Heat and Thermodynamics. McGraw-Hill, New York (1968)

    Google Scholar 

  45. Rosenberg, H.M.: The thermal conductivity of metals at low temperatures. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 245, 441–497 (1955)

    Google Scholar 

  46. Smith, J.L., Haire, R.G.: Superconductivity of americium. Science 200(4341), 535–537 (1978)

    Article  ADS  Google Scholar 

  47. Myers, H.P. (ed.): Introductory Solid State Physics, 2nd edn. CRC Press, Boca Raton (1997)

    Google Scholar 

  48. Debessai, M., Matsuoka, T., Hamlin, J., Schilling, J., Shimizu, K.: Pressure-induced superconducting state of europium metal at low temperatures. Phys. Rev. Lett. 102(19), 197002 (2009)

    Article  ADS  Google Scholar 

  49. Dunn, K., Bundy, F.: Pressure-induced superconductivity in strontium and barium. Phys. Rev. B 25(1), 194 (1982)

    Article  ADS  Google Scholar 

  50. Wittig, J., Probst, C., Schmidt, F., Gschneidner Jr, K.: Superconductivity in a new high-pressure phase of scandium. Phys. Rev. Lett. 42(7), 469 (1979)

    Article  ADS  Google Scholar 

  51. König, R., Schindler, A., Herrmannsdörfer, T.: Superconductivity of compacted platinum powder at very low temperatures. Phys. Rev. Lett. 82(22), 4528 (1999)

    Article  Google Scholar 

  52. Shimizu, K., Kimura, T., Furomoto, S., Takeda, K., Kontani, K., Onuki, Y., Amaya, K.: Superconductivity in the non-magnetic state of iron under pressure. Nature 412(6844), 316–318 (2001)

    Article  ADS  Google Scholar 

  53. Eremets, M.I., Struzhkin, V.V., Mao, H.-K., Hemley, R.J.: Superconductivity in boron. Science 293(5528), 272–274 (2001)

    Article  ADS  Google Scholar 

  54. Struzhkin, V.V., Hemley, R.J., Mao, H.-K., Timofeev, Y.A.: Superconductivity at 10–17 K in compressed sulphur. Nature 390(6658), 382–384 (1997)

    Article  ADS  Google Scholar 

  55. Shimizu, K., Suhara, K., Ikumo, M., Eremets, M., Amaya, K.: Superconductivity in oxygen. Nature 393(6687), 767–769 (1998)

    Article  ADS  Google Scholar 

  56. Gschneidner, K.A., Bünzli, J.-C., Pecharsky, V.K.: Handbook on the physics and chemistry of rare earths, vol. 34. (Access Online via Elsevier, Amsterdam, 2004)

    Google Scholar 

  57. Buzea, C., Robbie, K.: Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18(1), R1 (2005)

    Article  ADS  Google Scholar 

  58. Duan, D., Meng, X., Tian, F., Chen, C., Wang, L., Ma, Y., Cui, T., Liu, B., He, Z., Zou, G.: The crystal structure and superconducting properties of monatomic bromine. J. Phys.: Condens. Matter 22(1), 015702 (2010)

    ADS  Google Scholar 

  59. Corak, W.S., Goodman, B.B., Satterthwaite, C.B., Wexler, A.: Atomic heats of normal and superconducting vanadium. Phys. Rev. 102(3), 656–661 (1956)

    Article  ADS  Google Scholar 

  60. Schoenberg, D. (ed.): Superconductivity. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  61. Ekin, J. (ed.): Experimental Techniques for Low Temperature Measurements. Oxford University Press, Oxford (2006)

    Google Scholar 

  62. Ehrenfest, P., Klein, M.J., Casimir, H.: Collected Scientific Papers. North-Holland, Amsterdam (1959)

    Google Scholar 

  63. Stokka, S., Fossheim, K., Ziolkiewicz, S.: Specific heat at a first-order phase transition: SbSI. Phys. Rev. B 24(5), 2807 (1981)

    Article  ADS  Google Scholar 

  64. Leupold, H., Boorse, H.: Superconducting and normal specific heats of a single crystal of niobium. Phys. Rev. 134(5A), A1322 (1964)

    Article  ADS  Google Scholar 

  65. Robinson, W., Friedberg, S.: Specific heats of NiCl2·6H2O and CoCl2·6H2O between 1.4 and 20 K. Phys. Rev. 117(2), 402 (1960)

    Article  ADS  Google Scholar 

  66. Granato, A.: Thermal properties of mobile defects. Phys. Rev. 111(3), 740–746 (1958)

    Article  ADS  Google Scholar 

  67. Martin, D.L.: The specific heat of copper from 20 to 300 K. Can. J. Phys. 38(1), 17–24 (1960). doi:10.1139/p60-003

    Article  ADS  Google Scholar 

  68. Collings, E., Jelinek, F., Ho, J., Mathur, M., Timmerhaus, K., Reed, R., Clark, A.: Advances in Cryogenic Engineering, vol. 22, pp. 159. Plenum Press, New York (1977)

    Google Scholar 

  69. Gopal, E.: Magnetic contribution to specific heats. In: Specific Heats at Low Temperatures, pp. 84–111. Springer, New York (1966)

    Google Scholar 

  70. Kahn, O.: Molecular Magnetism. VCH, Weinheim (1993)

    Google Scholar 

  71. Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance Spectroscopy. Oxford University Press, Oxford (2001)

    Google Scholar 

  72. Sanchez, J., Griveau, J.-C., Javorsky, P., Colineau, E., Eloirdi, R., Boulet, P., Rebizant, J., Wastin, F., Shick, A., Caciuffo, R.: Magnetic and electronic properties of NpCo2: evidence for long-range magnetic order. Phys. Rev. B 87(13), 134410 (2013)

    Article  ADS  Google Scholar 

  73. De Jongh, L., Miedema, A.: Experiments on simple magnetic model systems. Adv. Phys. 50(8), 947–1170 (2001)

    Article  ADS  Google Scholar 

  74. Van Kranendonk, J., Van Vleck, J.H.: Spin waves. Rev. Mod. Phys. 30(1), 1–23 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Hemingway, B.S., Robie, R.A.: Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on the Schoitky anomaly in the heat capacity of staurolite. Am. Mineral. 69, 307–318 (1984)

    Google Scholar 

  76. Berman, R. (ed.): Thermal Conduction in Solids. Clarendon Press, Oxford (1976)

    Google Scholar 

  77. Hagmann, C., Richards, P.: Adiabatic demagnetization refrigerators for small laboratory experiments and space astronomy. Cryogenics 35(5), 303–309 (1995)

    Article  ADS  Google Scholar 

  78. Ho, J.C., Phillips, N.E.: Tungsten-Platinum alloy for heater wire in calorimetry below 0.1 K. Rev. Sci. Instrum. 36(9), 1382 (1965)

    Article  ADS  Google Scholar 

  79. Pobell, F. (ed.) Matter and Methods at Low Temperature, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  80. Friedberg, S., Raquet, C.: The heat capacity of Cu(NO3)2·2.5H2O at low temperatures. J. Appl. Phys. 39(2), 1132–1134 (1968)

    Article  ADS  Google Scholar 

  81. Friedberg, S., Cohen, A., Schelleng, J.: The specific heat of FeCl2·4H20 between 1.1 and 20 K. In: DTIC Document (1961)

    Google Scholar 

  82. Lounasmaa, O., Sundström, L.J.: Specific heat of gadolinium, terbium, dysprosium, holmium, and thulium metals between 3 and 25 K. Phys. Rev. 150(2), 399 (1966)

    Google Scholar 

  83. Lounasmaa, O., Sundström, L.J.: Specific heat of lanthanum, praseodymium, neodymium, and samarium metals between 3 and 25 K. Phys. Rev. 158(3), 591 (1967)

    Google Scholar 

  84. Colineau, E., Javorský, P., Boulet, P., Wastin, F., Griveau, J., Rebizant, J., Sanchez, J., Stewart, G.: Magnetic and electronic properties of the antiferromagnet NpCoGa5. Phys. Rev. B 69(18), 184411 (2004)

    Google Scholar 

  85. Sanchez, J., Aoki, D., Eloirdi, R., Gaczyński, P., Griveau, J., Colineau, E., Caciuffo, R.: Magnetic and electronic properties of NpFeGa5. J. Phys. Condens. Matter 23(29), 295601 (2011)

    Google Scholar 

  86. srdata.nist.gov

    Google Scholar 

  87. Bromiley, P.A.: Development of an Adiabatic Demagnetisation Refrigerator for Use in Space. University of London, London (2000)

    Google Scholar 

  88. Wikus, P., Burghart, G., Figueroa-Feliciano, E.: Optimum Operating Regimes of Common Paramagnetic Refrigerants. Cryogenics 51(9), 555–558 (2011)

    Google Scholar 

  89. Kuriyama, T., Hakamada, R., Nakagome, H., Tokai, Y., Sahashi, M., Li, R., Yoshida, O., Matsumoto, K., Hashimoto, T.: High efficient two-stage GM refrigerator with magnetic material in the liquid helium temperature region. In: Proceedings of the 1989 Cryogenic Engineering Conference. Advances in Cryogenic Engineering, vol. 35B, pp. 1261–1269 (1990)

    Google Scholar 

  90. Sahashi, M., Tokai, Y., Kuriyama, T., Nakagome, H., Li, R., Ogawa, M., Hashimoto, T.: New magnetic material R3T system with extremely large heat capacities used as heat regenerators. Adv. Cryog. Eng. 35(Part B) (1990)

    Google Scholar 

  91. Ackermann, R.A.: Cryogenic Regenerative Heat Exchangers. Springer, Berlin (1997)

    Google Scholar 

  92. Satoh, T., Onishi, A., Umehara, I., Adachi, Y., Sato, K., Minehara, E.: A Gifford-McMahon cycle cryocooler below 2 K. In: Cryocoolers 11, pp. 381–386. Springer, New York (2002)

    Google Scholar 

  93. Gschneidner, K.A., Jr., Pecharsky, A.O., Pecharsky, V.K.: Low temperature cryocooler regenerator materials. In: Ross, R., Jr. (ed.) Cryocoolers 12, pp. 457–465. Springer, New York (2002)

    Google Scholar 

  94. Hill, R., Cosier, J., Hukin, D.: The specific heat of erbium from 0.4 to 23 K. J. Phys. F Met. Phys. 14(5), 1267 (1984)

    Google Scholar 

  95. Parkinson, D., Roberts, L.: The atomic heat of cerium between 1.5 and 20 K. Proc. Phys. Soc. Sect. B 70(5), 471 (1957)

    Google Scholar 

  96. Lounasmaa, O.: Specific heat of europium and ytterbium metals between 3 and 25 K. Phys. Rev. 143(2), 399 (1966)

    Google Scholar 

  97. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)

    Google Scholar 

  98. Boulon, M.-E., Cucinotta, G., Luzon, J., Degl’innocenti, C., Perfetti, M., Bernot, K., Calvez, G., Caneschi, A., Sessoli, R.: Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angewandte Chemie (International ed. in English) 52(1), 350–354 (2013). doi:10.1002/anie.201205938

  99. Kirchmayr, H.R., Poldy, C.A., Groessinger, R., Haferl, R., Hilscher, G., Steiner, W., Wiesinger, G.: Magnetic properties of intermetallic compounds of rare earth metals. In: Handb. Phys. Chem. Rare Earths 2, 55–230 (1979)

    Google Scholar 

  100. Konings, R., van Miltenburg, J., Van Genderen, A.: Heat capacity and entropy of monoclinic Gd2O3. J. Chem. Thermodyn. 37(11), 1219–1225 (2005)

    Google Scholar 

  101. Jin, T., Li, C., Tang, K., Chen, L., Xu, B., Chen, G.: Hydrogenation-induced variation in crystal structure and heat capacity of magnetic regenerative material Er3 Ni. Cryogenics 51(5), 214–217 (2011)

    Google Scholar 

  102. Alekseev, P., Znamenskiĭ, N., Lazukov, V., Keĭlin, V., Kovalev, I., Kruglov, S., Nefedova, E., Sadikov, I.: Microscopic nature of the extremely high specific heat of rare earth intermetallic compounds at low temperatures and the possibility of its application in technical superconductivity. Crystallogr. Rep. 51(1), S79–S84 (2006)

    Google Scholar 

  103. Zeller, R., Pohl, R.: Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4(6), 2029 (1971)

    Google Scholar 

  104. Zaitlin, M.P., Anderson, A.: Phonon thermal transport in noncrystalline materials. Phys. Rev. B 12(10), 4475 (1975)

    Google Scholar 

  105. Anderson, P.W., Halperin, B., Varma, C.M.: Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25(1), 1–9 (1972)

    Google Scholar 

  106. Phillips, W.: Tunneling states in amorphous solids. J. Low Temp. Phys. 7(3–4), 351–360 (1972)

    Google Scholar 

  107. Hunklinger, S.: Ultrasonics Symposium Proceedings. In: IEEE, New York, pp. 443 (1974)

    Google Scholar 

  108. Hunklinger, S.: Tunneling in amorphous solids. Cryogenics 28(4), 224–229 (1988)

    Google Scholar 

  109. Lasjaunias, J., Ravex, A., Vandorpe, M., Hunklinger, S.: The density of low energy states in vitreous silica: specific heat and thermal conductivity down to 25 mK. Solid State Commun. 17(9), 1045–1049 (1975)

    Google Scholar 

  110. Black, J.L.: Relationship between the time-dependent specific heat and the ultrasonic properties of glasses at low temperatures. Phys. Rev. B 17(6), 2740–2761 (1978)

    Google Scholar 

  111. Meissner, M., Abens, S., Strelow, P.: Hahn-Meitner Institute Report, Berlin (2000)

    Google Scholar 

  112. Jug†, G.: Theory of the thermal magnetocapacitance of multicomponent silicate glasses at low temperature. Phil. Mag. 84(33), 3599–3615 (2004)

    Google Scholar 

  113. Hartwig, G.: Polymer Properties at Room and Cryogenic Temperatures. Springer, Berlin (1994)

    Google Scholar 

  114. Engeln, I., Meissner, M., Hartwig, G., Evans, D.: Non-metallic Materials and Composites at Low Temperatures, vol. 2. Plenum, New York (1982)

    Google Scholar 

  115. Baur, H.: Über die Wärmekapazität des kristallinen Polyäthylens. Colloid Polym. Sci. 241(1), 1057–1070 (1970)

    Google Scholar 

  116. Baur, H.: Bemerkungen zur Wärmeleitfähigkeit und Visko-Elastizität von Polymer-Festkörpern. Kolloid-Zeitschrift und Zeitschrift für Polymere 247(1–2), 753–762 (1971)

    Google Scholar 

  117. Baur, H.: Einfluß der Valenzwinkelsteifigkeit auf die thermischen Schwankungen und den Debye-Waller-Faktor von Polymer-Kristallen. Kolloid-Zeitschrift und Zeitschrift für Polymere 250(4), 289–297 (1972)

    Google Scholar 

  118. Barucci, M., Di Renzone, S., Olivieri, E., Risegari, L., Ventura, G.: Very-low temperature specific heat of Torlon. Cryogenics 46(11), 767–770 (2006)

    Google Scholar 

  119. Touloukian, Y., Powell, R., Ho, C., Klernens, P.: Thermal conductivity, Thermophysical Properties of Matter. IFI/Plenum, New York (1970)

    Google Scholar 

  120. Johnson, V.J.: A compendium of the properties of materials at low temperature (phase I). Part II. Properties of solids. In: DTIC Document (1960)

    Google Scholar 

  121. White, G.K., Meeson, P.: Experimental techniques in low-temperature physics. In: Monographs on the Physics and Chemistry of Materials, vol. 59 (2002)

    Google Scholar 

  122. Marquardt, E., Le, J., Radebaugh, R.: 11th international cryocooler conference Keystone, Co. Cryogenic Material Properties Database, National Institute of Standards and Technology, Boulder, 20–22 June 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). Heat Capacity. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_1

Download citation

Publish with us

Policies and ethics