Skip to main content

Potentially Harmful Elements in Abandoned Mine Waste

  • Chapter
  • First Online:
Book cover PHEs, Environment and Human Health

Abstract

Soils are essential components of the environment therefore; soil quality must be controlled and preserved. However, the increased concentration and distribution of potentially toxic elements (PTE) in soils by anthropogenic activities of industrial and mining resources are causing worldwide concern. The anomalous concentration of PTE may affect the soil’s environment, reducing it’s quality and therefore pollution which can be followed by an eventual accumulation through the food chain. This implies a serious risk for crops, livestock and human health. There is an increasing need to apply innovative technologies of prevention, monitoring, risk assessment and remediation, more sustainable and economical, in the context of mining site soils.

In this chapter, the impact of PHEs from abandoned mine sites on the environment is discussed through case studies from Europe (NE Italy). The environmental effects recognized for these specific sites could be valid other mining sites worldwide. Some case studies highlight the toxicity assessment of contaminated soils from abandoned mining areas; others focus on the metal uptake and translocation ability in plants that can produce adverse effects on plant morphology and health and biological soil quality evaluation of abandoned mining site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuja P, Albertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17

    Article  CAS  Google Scholar 

  • Adriano DC, Chlopecka A, Kapland DI, Clijsters H, Vangrosvelt J (1995) Soil contamination and remediation. Philosophy, science and technology. In: Prost R (ed) Contaminated soils. £th ICOBTE, Colloques INRA Paris, 85, p 465–504

    Google Scholar 

  • Alfonso DL, Puppo A (2009) Reactive oxygen species in plant signaling. In: Baluška F, Vivanco J (eds) Signaling and communication in plants. Springer, Heidelberg, pp 175–190

    Google Scholar 

  • Ali MB, Vajpayee P, Tripathi RD, Ria UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70:462–469

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, IIth edn. Blackie Academic and Professional, Glasgow

    Book  Google Scholar 

  • Angelone M, Bini C (1992) Trace elements concentrations in soils and plants of Western Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton, pp 19–60

    Google Scholar 

  • Aravind P, Prasad NV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Armstrong D (2008) Advanced protocols in oxidative stress I. Humana Press, New Jersey, p 430

    Book  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AMJ, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker A, Mc Grath S, Reeves R, Smith J (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils. Lewis Publisher, London, pp 85–107

    Google Scholar 

  • Bargagli R (1993) Plant leaves and lichens as biomonitors of naturals or anthropogenic emissions of mercury. In: Markert B (ed) Plants as biomonitors. WCH, Weinheim, pp 468–484

    Google Scholar 

  • Baryla A, Laborde C, Montillet JL, Triantaphylides C, Chagvardieff P (2000) Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environ Pollut 109:131–135

    Article  CAS  Google Scholar 

  • Bini C (2005) Plants growing on abandoned mine soils: a chance in phytoremediation. In: Proceedings of the III EGU conference, Wien (CD-rom)

    Google Scholar 

  • Bini C (2007) From soil contamination to land restoration. I georgofili – quaderni 2007, 9. Società Editrice Fiorentina, Firenze, pp 41–62

    Google Scholar 

  • Bini C (2010) From soil contamination to land restoration. In: Steinberg RV (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publisher, New York. ISBN 978-1-60741-791-0

    Google Scholar 

  • Bini C (2012) Environmental impact of abandoned mine waste: a review. Nova Science Publishers, Hauppauge, New York, pp 92, ISBN 9781613248379

    Google Scholar 

  • Bini C, Casaril S, Pavoni B (2000a) Fertility gain and heavy metal accumulation in plants and soils. Environ Toxicol Chem 77:131–142

    Article  CAS  Google Scholar 

  • Bini C, Maleci L, Gabbrielli L, Paolillo A (2000b) Biological perspectives in soil remediation with reference to chromium. In: Wise D (ed) Bioremediation of contaminated soils. Marcel Dekker, New York, pp 663–675

    Google Scholar 

  • Bini C, Maleci L, Romanin A (2008) The chromium issues in soils of the leather tannery district in Italy. J Geochem Explor 96:194–202

    Article  CAS  Google Scholar 

  • Blaylock MJ, Elles MP, Nuttal CY, Zdimal KL, Lee CR (2003) Treatment of As contaminated soil and water using Pteris vittata. In: Proceedings of the VI ICOBTE, Uppsala, Sv

    Google Scholar 

  • Brooks RR (1998) Phytochemistry of hyperaccumulator. In: Brooks R (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxford, pp 15–53

    Google Scholar 

  • Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks R (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxford, pp 327–356

    Google Scholar 

  • Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137:269–276

    Article  Google Scholar 

  • Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metalpolluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72:1349–1353

    Article  CAS  Google Scholar 

  • Chesworth W (2008) Encyclopedia of soil science, 1st edn. Springer Verlag, Dordrecht, pp 634–664

    Book  Google Scholar 

  • Corradi M, Bianchi A, Albasini A (1993) Chromium toxicity in Salvia sclarea. Effects of hexavalent chromium on seed germination and seedling development. Environ Exp Bot 33(3):405–413

    Article  CAS  Google Scholar 

  • Dissegna M, Marchetti M, Vannicelli Casoni L (1997) I sistemi di terre nei paesaggi forestali del Veneto. Regione del Veneto, Dipartimento per le foreste e l’economia Montana

    Google Scholar 

  • Ernst WHO (1993) Geobotanical and biogeochemical prospecting for heavy metal deposits in Europe and Africa. In: Markert B (ed) Plants as biomonitors. WCH, Weinheim, pp 107–126

    Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Fontana S, Wahsha M, Bini C (2010) Preliminary observations on heavy metal contamination in soils and plants of an abandoned mine in Imperina Valley (Italy). Agrochimica 54(4):218–231

    CAS  Google Scholar 

  • Fontana S, Bini C, Wahsha M, Bullo M (2011) Heavy metals contamination in soils and their transfer to common wheat (Triticum aestivum L.): a case study. Geophys Res Abstr 13:1751–1

    Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated Brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Frizzo P, Ferrara E (1994) Mixed sulphides mine district of Agordo–Valsugana (Subalpine Basement, Eastern Alps). In: Proceedings of the special workshop in memory of Prof. Stefano Zucchetti, Torino, pp 147–154

    Google Scholar 

  • Ghaderian SM, Mothadi A, Rahiminejad MR, Baker AJM (2007) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145:293–298

    Article  CAS  Google Scholar 

  • Giuliani C, Pellegrino F, Tirillini B, Maleci L (2008) Micromorphological and chemical characterization of Stachys recta subsp serpentini (Fiori) Arrigoni in comparison to S. recta sub sp. recta (Lamiaceae). Flora 203:376–385

    Article  Google Scholar 

  • Gobert M, Gruffat D, Habeanu M, Parafita E, Bauchart D, Durand D (2010) Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Sci 85:676–683

    Article  CAS  Google Scholar 

  • Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362–368

    Article  CAS  Google Scholar 

  • Helios-Rybicka E (1996) Impact of mining and metallurgical industries on the environment in Poland. Appl Geochem 11(1–2):3–11

    Article  Google Scholar 

  • Jabiol B, Brethes A, Ponge JF, Toutain F, Brun JJ (2007) L’humus sous toutes ses formes, 2nd edn. BIalec, Nancy, p 67

    Google Scholar 

  • Jenny H (1989) The soil resource. Springer Verlag, New York, p 377

    Google Scholar 

  • Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157:931–937

    Article  CAS  Google Scholar 

  • Jian-Min Z, Zhi D, Mei-Fang C, Cong-Qiang L (2007) Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China. Pedosphere 17(5):588–594

    Article  Google Scholar 

  • Joshi G, Sultana R, Tangpong J, Cole MP, Clair D, Vore M, Estus S, Butterfield DA (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39(11):1147–1154

    Article  CAS  Google Scholar 

  • Jung MC (2001) Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Appl Geochem 16:1369–1375

    Article  CAS  Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead–zinc mine, Korea. Appl Geochem 11:53–59

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements – an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74

    Google Scholar 

  • Katoch B, Begum R (2003) Biochemical basis of the high resistance to oxidative stress in Dictyostelium discoideum. Indian Acad Sci 28(5):581–588

    CAS  Google Scholar 

  • Keane B, Collier MH, Shann JR, Rogstad SH (2001) Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci Total Environ 281:63–78

    Article  CAS  Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Królak E (2003) Accumulation of Zn, Cu, Pb and Cd by dandelion (Taraxacum officinale Web.) in environments with various degrees of metallic contamination. Pol J Environ Stud 12(6):713–721

    Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation of five Salix L. Species. Int J Phytoremediation 6(3):269–287

    Article  CAS  Google Scholar 

  • Lal R (2006) Encyclopedia of soil science, vol 2, 2nd edn. Taylor and Francis, New York, pp 275–443

    Google Scholar 

  • Landberg T, Greger M (2002) Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J Plant Physiol 159:69–75

    Article  CAS  Google Scholar 

  • Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16:1377–1386

    Article  CAS  Google Scholar 

  • Lehoczky E, Szabados I, Marth P (1996) Cadmium content of plants as affected by soil cadmium concentrations. Commun Soil Sci Plant Anal 27:1765–1777

    Article  CAS  Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J Geochem Explor 96:223–230

    Article  CAS  Google Scholar 

  • Lopareva-Pohu A, Verdin A, Garçon G, Sahraoui AL, Pourrut B, Debiane D, Waterlot C, Laruelle F, Bidar G, Douay F, Shirali P (2011) Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ Pollut 159:1721–1729

    Article  CAS  Google Scholar 

  • Loranger-Merciris G, Imbert D, Bernhard-Reversat F, Ponge JF, Lavelle P (2007) Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species. Biol Fertil Soils 44:269–276

    Article  Google Scholar 

  • Lottermoser B (2010) Mine wastes characterization, treatment and environmental impacts, 3rd edn. Springer Verlag, New York, pp 1–40

    Google Scholar 

  • Loureiro S, Santos C, Pinto G, Costa A, Monteiro M, Nogueira AJA, Soares A (2006) Toxicity assessment of two soils from Jales mine (Portugal) using plants: growth and biochemical parameters. Arch Environ Contam Toxicol 50:182–190

    Article  CAS  Google Scholar 

  • Malawska M, Wilkomirski B (2001) An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Ilawa Glòwna, Poland. Water Air Soil Pollut 127:339–349

    Article  CAS  Google Scholar 

  • Maleci L, Gentili L, Pinetti A, Bellesia F, Servettaz O (1999) Morphological and phytochemical characters of Thymus striatus Vahl growing in Italy. Plant Biosyst 133(2):137–144

    Article  Google Scholar 

  • Maleci L, Bini C, Paolillo A (2001) Chromium (III) uptake by Calendula arvensis L. and related phytotoxicity. In: Proceedings of the VI ICOBTE, Guelph, p 384 (abstract)

    Google Scholar 

  • Maleci L, Buffa G, Wahsha M and Bini C (2013) Morphological changes induced by heavy metals in dandelion (Taraxacum officinale Web.) growing on mine soils. J Soils Sediments. doi:10.1007/s11368-013-0823-y

  • Mangabeira P, Almeida AA, Mielke M, Gomes FP, Mushrifah I, Escaig F, Laffray D, Severo MI, Oliveira AH. Galle P (2001) Ultrastructural investigations and electron probe X-ray microanalysis of chromium-treated plants. In: Proceedings of the VI ICOBTE, Guelph, p 555

    Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soils: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158(1):345–356

    Article  CAS  Google Scholar 

  • Markert B, Breure T, Zechmeister HG (2003) Bioindicators an biomonitors – principles, concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  • Mc Grath S (1998) Phytoextraction for soil remediation. In: Brooks R (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxford, pp 261–287

    Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  • Migliorini M, Pigino G, Bianchi N, Bernini F, Leonzio C (2004) The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ Pollut 129(2):331–340

    Article  CAS  Google Scholar 

  • Mleczek M, Lukaszewski M, Kaczmarek Z, Rissmann I, Golinski P (2009) Efficiency of selected heavy metals accumulation by Salix viminalis roots. Environ Exp Bot 65:48–53

    Article  CAS  Google Scholar 

  • Mukherjee PK, Ahamed KN, Kumar V, Mukherjee K, Houghton PJ (2007) Protective effect of biflavones from Araucaria bidwillii hook in rat cerebral ischemia/reperfusion induced oxidative stress. Behav Brain Res 178:221–228

    Article  CAS  Google Scholar 

  • Mun HW, Hoe AL, Koo LD (2008) Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J Environ Sci 20:1341–1347

    Article  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  • Pandolfini T, Gremigni P, Gabbrielli R (1997) Biomonitoring of soil health by plants. In: Pankhurst C, Doube BM, Gupta VV (eds) Biological indicators of soil health. CAB Int, Wallingford, pp 325–347

    Google Scholar 

  • Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333

    Article  Google Scholar 

  • Preeti P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 1(5):1009

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Rosselli W, Rossi M, Sasu I (2006) Cd, Cu and Zn contents in the leaves of Taraxacum officinale. Swiss Federal Institute for Forest. Snow Landsc Res 80(3):361–366

    Google Scholar 

  • Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Sarret G, Vangronsveld J, Roux M, Coves J, Manceau A (2001) Bioaccumulation of metal in plants and microorganisms studied by electron microscopy and EXAFS spectroscopy. In: Proceedings of the VI ICOBTE, Guelph, p 555

    Google Scholar 

  • Savinov AB, Kurganova LN, Shekunov YI (2007) Lipid peroxidation rates in Taraxacum officinale Wigg. and Vicia cracca L. from biotopes with different levels of soil pollution with heavy metals. Russian J Ecol 38(3):174–180

    Article  CAS  Google Scholar 

  • Selim HM, Sparks DL (2001) Heavy metals release in soils, 1st edn. Lewis Publishers, Boca Raton, pp 98–108

    Book  Google Scholar 

  • Simon L, Martin HW, Adriano DC (1996) Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut 91(3–4):351–362

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  Google Scholar 

  • Soffler C (2007) Oxidative stress. Vet Clin North Am Equine Pract 23(1):135–157

    Article  Google Scholar 

  • Taulavuori E, Hellström E, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52(365):2375–2380

    Article  CAS  Google Scholar 

  • Timbrell J (2009) Principles of biochemical toxicology, 4th edn. Informa Healthcare USA, Inc., New York

    Google Scholar 

  • Turuga L, Albulescu M, Popovici H, Puscas A (2008) Taraxacum officinale in phytoremediation of contaminated soils by industrial activities. Ann West Univ Timisoara Ser Chem 17(2):39–44

    CAS  Google Scholar 

  • Vandecasteele B, De Vos B, Tack F (2002) Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Sci Total Environ 299:191–205

    Article  CAS  Google Scholar 

  • Vasquez MD, Poschenrieder C, Barcelo J (1991) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120:215–226

    Article  Google Scholar 

  • Vergnano Gambi O (1992) The distribution and ecology of the vegetation of ultramafic soils in Italy. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Press, Dordrecht, pp 217–247

    Chapter  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wahsha M, Al-Jassabi S (2009) The role of Silymarin in the protection of mice liver damage against Microcystin-LR toxicity. Jordan J Biol Sci 2(2):63–68

    Google Scholar 

  • Wahsha M, Al-Jassabi S, Azirun M, Abdul-Aziz K (2010) Biochemical screening of Hesperidin and Naringin against liver damage in Balb/c mice exposed to Microcystin- LR. Middle East J Sci Res 6(4):354–359

    CAS  Google Scholar 

  • Wahsha M, Bini C, Fontana S, Zilioli D (2011) Phytotoxicity assay on soils and plants: elements for phytoremediation of mine soils. Geophy Res Abstr 13:1807–1

    Google Scholar 

  • Wahsha M, Ferrarini A, Vannuzzo L, Bini C, Fontana S (2012a) Soil quality evaluation of Spolic Technosols. Case study from the abandoned mining site in Imperina Valley (Belluno, Italy). Environ Qual 9:1–9

    Google Scholar 

  • Wahsha M, Bini C, Argese E, Minello F, Fontana S, Wahsheh H (2012b) Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. J Geochem Explor 123:19–24

    Article  CAS  Google Scholar 

  • Wahsha M, Al-Omari A, Hassan M, Abuadas F, Ahmed E, Mostafavi K, Moradi M, Ghotbi M (2012c) Protective action of flavonoids extracted from different Jordanian plants against oxidative stress. Int J Biol Pharm Res 3(3):450–456

    Google Scholar 

  • Wahsha M, Bini C, Fontana S, Wahsha A, Zilioli D (2012d) Toxicity assessment of contaminated soils from a mining area in Northeast Italy by using lipid peroxidation assay. J Geochem Explor 113:112–117

    Article  CAS  Google Scholar 

  • Wenzel WW, Sattler H, Jockwer F (1993) Metal hyperaccumulator plants: a survey on species to be potentially used for soil remediation. Agronomy Abstr p 52

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yun-Guo L, Hui-Zhi Z, Guang-Ming Z, Bao-Rong H, Xin L (2006) Heavy metal accumulation in plants on Mn mine tailings. Pedosphere 16(1):131–136

    Article  Google Scholar 

  • Zhang XY, Lin FF, Mike TF, Wong XL, Feng XL, Wang K (2009) Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environ Monit Assess 154:1–4

    Article  Google Scholar 

  • Zielinska M, Kostrzewa A, Ignatowicz E, Budzianowski J (2001) The flavonoids, quercetin and isorhamnetin 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. Acta Biochim Pol 48(1):183–189

    CAS  Google Scholar 

  • Zupan M, Hudnik V, Lobnik F, Kadunc V (1995) Accumulation of Pb, Cd, Zn from contaminated soil to various plants and evaluation of soil remediation with indicator plant (Plantago lanceolata). In: Prost R (ed) Contaminated soils. INRA, Paris, pp 325–335

    Google Scholar 

  • Zupan M, Kralj T, Grcman H, Hudnik V, Lobnik F (2003) The accumulation of Cd, Zn, Pb in Taraxacum officinale and Plantago lanceolata from contaminated soils. In: Proceedings of the VII ICOBTE, Uppsala Sv

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Wahsha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wahsha, M., Al-Rshaidat, M.M.D. (2014). Potentially Harmful Elements in Abandoned Mine Waste. In: Bini, C., Bech, J. (eds) PHEs, Environment and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8965-3_5

Download citation

Publish with us

Policies and ethics