Skip to main content

Systemic Enzyme Therapy: Fact or Fiction? A Review with Focus on Bromelains, Proteolytic Enzymes from the Pineapple Plant

  • Chapter
  • First Online:
Book cover Recent Advances in Redox Active Plant and Microbial Products

Abstract

In this chapter, bromelain, a crude multi-component extract isolated from the stems of the pineapple plant, takes us on a tour through rather unusual therapeutic approaches and pharmacological mechanisms. Bromelain acts on several targets that address edematous, inflammatory, and immunological processes. Therefore, many indications have been treated with or are conceivable to be treated by use of this phytomedicine. Bromelain teaches us that we should keep an open mind toward at first sight exotic therapeutic approaches. A plea for the use of the potential of natural products that are well established in medical therapy for decades or even centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To put it right: the inhibition of only one enzyme through the action of a highly selective active ingredient is not necessarily and always equivalent to a highly restricted pharmacodynamic action. For example, inhibitors of the mentioned tyrosine kinase influence several intracellular processes by inhibiting the signaling pathway at an early stage. Still these inhibitors act much more selectively as compared to classical chemotherapeutics. Generally spoken, the more downstream the interference within a particular signaling cascade and the more selective the inhibitor, the more selective the pharmacodynamic activity will be.

References

  • Amini A, Ehteda A, Masoumi S, Moghaddam, Akhter J, Pillai K, Morris DL (2013) Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). OncoTargets and therapy 6:403–409

    Google Scholar 

  • Baez R, Lopes MTP, Salas CE, Hernandez M (2007) In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med 73(13):1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Belanger-Quintana A, Burlina A, Harding CO, Muntau AC (2011) Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab 104:S19–S25

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Peters M, Deibert P, Koenig D, Birnesser H (2005) Bromelain- Übersicht und Diskussion zur therapeutischen Anwendung und seiner Bedeutung in der Sportmedizin und Sporttraumatologie. Deutsche Zeitschrift für Sportmedizin 56(1):12–19

    CAS  Google Scholar 

  • Bhui K, Prasad S, George J, Shukla Y (2009) Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett 282(2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Bhui K, Tyagi S, Srivastava AK, Singh M, Roy P, Singh R, Shukla Y (2012) Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G2/M arrest to apoptosis. Mol Carcinogen 51(3):231–243

    Article  CAS  Google Scholar 

  • Borrelli F, Capasso R, Severino B, Fiorino F, Aviello G, De Rosa G, Mazzella M, Romano B, Capasso F, Fasolino I, Izzo AA (2011) Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice. Neurogastroent Motil 23(8):745–E331

    Article  CAS  Google Scholar 

  • Brakebusch M, Wintergerst U, Petropoulou T, Notheis G, Husfeld L, Belohradsky BH, Adam D (2001) Bromelain is an accelerator of phagocytosis, respiratory burst and killing of candida albicans by human granulocytes and monocytes. Eur J Med Res 6(5):193–200

    CAS  PubMed  Google Scholar 

  • Brien S, Lewith G, Walker A, Hicks SM, Middleton D (2004) Bromelain as a treatment for osteoarthritis: a review of clinical studies. Evid-Based Compl Alt 1(3):251–257

    Article  Google Scholar 

  • Buttner L, Achilles N, Bohm M, Shah-Hosseini K, Mosges R (2013) Efficacy and tolerability of bromelain in patients with chronic rhinosinusitis—a pilot study. B-Ent 9(3):217–225

    CAS  PubMed  Google Scholar 

  • Castell JV, Friedrich G, Kuhn CS, Poppe GE (1997) Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. Am J Physiol-Gastr L 273(1):G139–G146

    CAS  Google Scholar 

  • Chobotova K, Vernallis AB, Majid FAA (2010) Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett 290(2):148–156

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Goldman J (1964) Bromelains therapy in rheumatoid arthritis. Pennsylvania Med J 67:27–30

    CAS  Google Scholar 

  • Desser L, Holomanova D, Zavadova E, Pavelka K, Mohr T, Herbacek I (2001) Oral therapy with proteolytic enzymes decreases excessive TGF-beta levels in human blood. Cancer Chemoth Pharm 47:S10–S15

    Article  CAS  Google Scholar 

  • Dhandayuthapani S, Perez HD, Paroulek A, Chinnakkannu P, Kandalam U, Jaffe M, Rathinavelu A (2012) Bromelain-induced apoptosis in GI-101A breast cancer cells. J Med Food 15(4):344–349

    Article  CAS  PubMed  Google Scholar 

  • Eckert K, Grabowska E, Stange R, Schneider U, Eschmann K, Maurer HR (1999) Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncol Rep 6(6):1191–1199

    CAS  PubMed  Google Scholar 

  • Enomoto T, Mineshita S, Shigei T (1968) Protective effect of stem bromelain against adrenaline pulmonary edema, and its dependence on the proteolytic activity. Jpn J Pharmacol 18(2):260–265

    Article  CAS  PubMed  Google Scholar 

  • Fahey T, Stocks N, Thomas T (1998) Systematic review of the treatment of upper respiratory tract infection. Arch Dis Child 79(3):225–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FDA (2001) Partial list of enzyme preparations that are used in foods (GRAS). Center for Food Safety and Applied Nutrition

    Google Scholar 

  • Fitzhugh DJ, Shan SQ, Dewhirst MW, Hate LP (2008) Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 128(1):66–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fokkens W, Lund V, Mullol J (2007) European position paper on rhinosinusitis and nasal polyps 2007. Rhinology 20 1–136

    Google Scholar 

  • Gaspani L, Limiroli E, Ferrario P, Bianchi M (2002) In vivo and in vitro effects of bromelain on PGE(2) and SP concentrations in the inflammatory exudate in rats. Pharmacology 65(2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Gilead L, Mumcuoglu KY, Ingber A (2012) The use of maggot debridement therapy in the treatment of chronic wounds in hospitalised and ambulatory patients. J Wound Care 21(2):78

    Google Scholar 

  • Guo R, Canter PH, Ernst E (2006) Herbal medicines for the treatment of rhinosinusitis: a systematic review. Otolaryng Head Neck 135(4):496–506

    Article  Google Scholar 

  • Hale LP, Greer PK, Sempowski GD (2002) Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clin Immunol 104(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Hale LP, Greer PK, Trinh CT, Gottfried AR (2005) Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin Immunol 116(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Harrach T, Eckert K, Schulzeforster K, Nuck R, Grunow D, Maurer HR (1995) Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem 14(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Harrach T, Gebauer F, Eckert K, Kunze R, Maurer HR (1994) Bromelain Proteinases Modulate the Cd44 Expression on Human Molt-4/8 Leukemia and Sk-Mel-28 Melanoma-Cells in Vitro. Int J Oncol 5(3):485–488

    CAS  PubMed  Google Scholar 

  • Heinicke R, Gortner W (1957) Stem bromelain, a new protease preparation from pineapple plants. Econ Bot 11:225–234

    Article  CAS  Google Scholar 

  • Huang JR, Wu CC, Hou RCW, Jeng KC (2008) Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14. Immunol Invest 37(4):263–277

    Article  CAS  PubMed  Google Scholar 

  • Inchingolo F, Tatullo M, Marrelli M, Inchingolo AM, Picciariello V, Inchingolo AD, Dipalma G, Vermesan D, Cagiano R (2010) Clinical trial with bromelain in third molar exodontia. Eur Rev Med Pharmaco 14(9):771–774

    CAS  Google Scholar 

  • Johann K, Eschmann K, Meiser P (2011) Keine klinische Evidenz für ein erhöhtes Blutungsrisiko durch Bromelain bei perioperativem Einsatz. Sportverl Sportschad 25(2):108–113

    Article  CAS  Google Scholar 

  • Kalra N, Bhui K, Roy P, Srivastava S, George J, Prasad S, Shukla Y (2008) Regulation of p53, nuclear factor KB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin. Toxicol Appl Pharm 226(1):30–37

    Article  CAS  Google Scholar 

  • Kolac C, Streichhan P, Lehr CM (1996) Oral bioavailability of proteolytic enzymes. Eur J Pharm Biopharm 42(4):222–232

    CAS  Google Scholar 

  • Kumakura S, Yamashita M, Tsurufuji S (1988) Effect of bromelain on kaolin-induced inflammation in rats. Eur J Pharmacol 150(3):295–301

    Article  CAS  PubMed  Google Scholar 

  • Leggett JE (2004) Acute sinusitis: when-and when not-to prescribe antibiotics. Postgrad Med 115(1):13–19

    Article  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58(9):1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Harrington RA, Hochman JS, Cannon CP, Goodman SD, Wilcox RG, Schunemann HJ, Ohman EM (2004) Thrombolysis and adjunctive therapy in acute myocardial infarction. Chest 126(3):549s–575s

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Opher AW (1964) Increased proteolytic activity of human blood serum after oral administration of bromelain. Exp Med Surg 22(4):277

    CAS  Google Scholar 

  • Moss JN, Frazier CV, Martin GJ (1963) Bromelains. The pharmacology of the enzymes. Arch Int Pharmacodyn Ther 145:166–189

    CAS  PubMed  Google Scholar 

  • Muller S, Marz R, Schmolz M, Drewelow B, Eschmann K, Meiser P (2013) Placebo-controlled randomized clinical trial on the immunomodulating activities of low- and high-dose bromelain after oral administration new evidence on the antiinflammatory mode of action of bromelain. Phytother Res 27(2):199–204

    Article  PubMed  Google Scholar 

  • Netti C, Bandi G, Pecile A (1966) Anti-inflammatory action of proteolytic enzymes of animal, vegetable or bacterial origin, administered orally compared with that of known antiphlogistic compounds. Il Farmaco Ed Pr 27(8):453–466

    Google Scholar 

  • Ogino M, Majima M, Kawamura M, Hatanaka K, Saito M (1996) Increased migration of neutrophils to granulocyte-colony stimulating factor in rat carrageenin-induced pleurisy: roles of complement, bradykinin, and inducible cyclooxygenase-2. Inflamm Res 45(7):335–346

    Article  CAS  PubMed  Google Scholar 

  • Ohishi S, Uchida Y, Ueno A, Katori M (1979) Bromelain, a thiolprotease from pineapple stem, depletes high molecular-weight kininogen by activation of hageman-factor (factor-XII). Thromb Res 14(4–5):665–672

    Article  CAS  Google Scholar 

  • Pavan R, Jain S, Shraddha, Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int 2012:976203

    Google Scholar 

  • Pillai K, Akhter J, Chua TC, Morris DL (2013) Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Invest 31(4):241–250

    Article  CAS  PubMed  Google Scholar 

  • Reddy VB, Lerner EA (2010) Plant cysteine proteases that evoke itch activate protease-activated receptors. Brit J Dermatol 163(3):532–535

    Article  CAS  Google Scholar 

  • Secor ER, Carson WF, Cloutier MM, Guernsey LA, Schramm CM, Wu CA, Thrall RS (2005) Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol 237(1):68–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Secor ER, Carson WF, Singh A, Pensa M, Guernsey LA, Schramm CM, Thrall RS (2008) Oral bromelain attenuates inflammation in an ovalbumin-induced murine model of asthma. Evid-Based Compl Alt 5(1):61–69

    Article  Google Scholar 

  • Secor ER, Szczepanek SM, Singh A, Guernsey L, Natarajan P, Rezaul K, Han DK, Thrall RS, Silbart LK (2012) LC-MS/MS Identification of a bromelain peptide biomarker from Ananas comosus. pp 1–10 Merr. Evid-Based Compl Alt.\

    Google Scholar 

  • Seifert J, Ganser R, Brendel W (1979) Absorption of a proteolytic-enzyme originating from plants out of the gastrointestinal-tract into blood and lymph of rats. Z Gastroenterol 17(1):1–8

    CAS  PubMed  Google Scholar 

  • Shigei T, Sakuma A, Nishiwaki T (1967) A study on the protective effect of bromelain, crude pineapple proteases, against adrenaline-induced pulmonary edema in rats. Jpn Heart J 8(6):718–720

    Article  CAS  PubMed  Google Scholar 

  • Smyth RD, Brennan R, Martin GJ (1962) Systemic biochemical changes following the oral administration of a proteolytic enzyme, bromelain. Arch Int Pharmacodyn Ther 136:230–236

    CAS  PubMed  Google Scholar 

  • Taussig SJ, Batkin S (1988) Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol 22(2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Taussig SJ, Yokoyama MM, Chinen A, Onari K, Yamakido M (1975) Bromelain: a proteolytic enzyme and its clinical application. A review. Hiroshima J Med Sci 24(2–3):185–193

    CAS  PubMed  Google Scholar 

  • Uhlig G, Seifert J (1981) The effect of proteolytic enzymes (traumanase) on posttraumatic edema. Fortschr Med 99(15):554–556

    CAS  PubMed  Google Scholar 

  • van Eimeren W (1994) Therapie traumatisch verursachter schwellungen. Thieme Verlag, Stuttgart, Deutschland

    Google Scholar 

  • Vellini M, Desideri D, Milanese A, Omini C, Daffonchio L, Hernandez A, Brunelli G (1986) Possible involvement of eicosanoids in the pharmacological action of bromelain. Arzneimittel-Forsch 36(1):110–112

    Google Scholar 

  • Yuan G, Wahlqvist ML, He G, Yang M, Li D (2006) Natural products and antiinflammatory activity. Asia Pacific J Clinical Nutr 15(2):143–152

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Meiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meiser, P., Xu, Z., Kirsch, G., Jacob, C. (2014). Systemic Enzyme Therapy: Fact or Fiction? A Review with Focus on Bromelains, Proteolytic Enzymes from the Pineapple Plant. In: Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P., Burkholz, T. (eds) Recent Advances in Redox Active Plant and Microbial Products. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8953-0_18

Download citation

Publish with us

Policies and ethics