Skip to main content

Haloperoxidase Enzymes as ‘Redox Catalysts’ Important for Industrial Biocatalysis

  • Chapter
  • First Online:
Recent Advances in Redox Active Plant and Microbial Products

Abstract

Many natural compounds are halogenated and the enzymes that carry out these reactions have been characterized. This chapter provides a brief overview of the different types of halogenating enzymes characterized to date and their differing structures. It concentrates specifically on the vanadium haloperoxidases with regard to their structure and mechanism and their uses in industrial biocatalysis. Many new drugs entering the market are halogenated and this modification is known to change their biological activity. The use of the enzymes known to carry out these specific reactions in ‘nature’ is important for the industrial biosynthesis of new drug molecules and halogenated building blocks for the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blasiak LC, Drennan CL (2009) Structural perspective on enzymatic halogenation. Acc Chem Res 42(1):147–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nat 440:368–371

    Google Scholar 

  • Brindley AA, Dalby AR, Isupov MN, Littlechild JA (1998) Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis. Acta Crystallogr D 54:454–457

    Article  CAS  PubMed  Google Scholar 

  • Butler A (1997) Vanadium-dependent redox enzymes. In: Vanadium haloperoxidase comprehensive biological catalysis. Academic Press, New York, pp 427–437

    Google Scholar 

  • Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21(1):180–188

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Sandy M (2009) Mechanistic considerations of halogenating enzymes. Nature 460(7257):848–854

    Article  CAS  PubMed  Google Scholar 

  • Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126(46):15060–15066

    Article  CAS  PubMed  Google Scholar 

  • Christmann U, Dau H, Haumann M, Kiss E, Liebisch P, Rehder D, Santoni G, Schulzke C (2004) Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach. Dalton T 16:2534–2540

    Article  Google Scholar 

  • Coughlin P, Roberts S, Rush C, Willetts A (1993) Biotransformation of alkenes by haloperoxidases—regiospecific bromohydrin formation from cinnamyl substrates. Biotechnol Lett 15(9):907–912

    Article  CAS  Google Scholar 

  • Coupe EE (2004) Phd thesis, Exeter, UK

    Google Scholar 

  • Coupe EE, Smyth MG, Fosberry A, Hall RM, Littlechild JA (2007) The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme. Protein Expres Purif 52(2):265–272

    Article  CAS  Google Scholar 

  • Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41(4):315–367

    Article  CAS  PubMed  Google Scholar 

  • Deng H, O’Hagan D (2008) The fluorinase, the chlorinase and the duf-62 enzymes. Curr Opin Chem Biol 12(5):582–592

    Article  CAS  PubMed  Google Scholar 

  • Dong CJ, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH (2005) Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309(5744):2216–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong CJ, Huang FL, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH (2004) Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427(6974):561–565

    Article  CAS  PubMed  Google Scholar 

  • Eustaquio AS, Pojer F, Noe JP, Moore BS (2008) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4(1):69–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Edit 42(3):355–357

    Article  CAS  Google Scholar 

  • Fujimori DG, Walsh CT (2007) What’s new in enzymatic halogenations. Curr Opin Chem Biol 11(5):553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Rodriguez E ( 2005) PhD thesis, University of Exeter

    Google Scholar 

  • Garcia-Rodriguez E, Ohshiro T, Aibara T, Izumi Y, Littlechild J (2005) Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera. J Biol Inorg Chem 10:275–282

    Google Scholar 

  • Gribble GW (1998) Naturally occurring organohalogen compounds. Acc Chem Res 31(3):141–152

    Article  CAS  Google Scholar 

  • Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241(8):1769–1777

    CAS  PubMed  Google Scholar 

  • Hemrika W, Renirie R, Dekker HL, Barnett P, Wever R (1997) From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci USA 94(6):2145–2149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemrika W, Renirie R, Macedo-Ribeiro S, Messerschmidt A, Wever R (1999) Xray crystal structures of active site mutants of the vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis. J Biol Chem 274:23820–23827

    Google Scholar 

  • Hill A, Littlechild J (2012) Oxidation and haloperoxidases. In: Comprehensive Chirality, vol 7. Elsevier Ltd., pp 329–349

    Google Scholar 

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biot 71(3):276–288

    Article  CAS  Google Scholar 

  • Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA (2000) Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. J Mol Biol 299(4):1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Isupov M, Littlechild J (2014) Manuscript in preparation

    Google Scholar 

  • Karmee SK, Roosen C, Kohlmann C, Lutz S, Greiner L, Leitner W (2009) Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media. Green Chem 11(7):1052–1055

    Article  CAS  Google Scholar 

  • Kravitz JY, Pecoraro VL (2005) Synthetic and computational modeling of the vanadium-dependent haloperoxidases. Pure Appl Chem 77(9):1595–1605

    Google Scholar 

  • Kuhnel K, Derat E, Terner J, Shaik S, Schlichting I (2007) Structure and quantum chemical characterization of chloroperoxidase compound 0, a common reaction intermediate of diverse heme enzymes. Proc Natl Acad Sci USA 104(1):99–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3(1):28–34

    Article  CAS  PubMed  Google Scholar 

  • Littlechild J, Garcia-Rodriguez E (2003) Structural studies on the dodecameric vanadium bromoperoxidase from Corallina species. Coordin Chem Rev 237(1–2):65–76

    Article  CAS  Google Scholar 

  • Littlechild J, Garcia-Rodriguez E, Dalby A, Isupov M (2002) Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. J Mol Recognit 15(5):291–296

    Article  CAS  PubMed  Google Scholar 

  • Littlechild J, Rodriguez EG, Isupov M (2009) Vanadium containing bromoperoxidase—Insights into the enzymatic mechanism using X-ray crystallography. J Inorg Biochem 103(4):617–621

    Article  CAS  PubMed  Google Scholar 

  • Macedo-Ribeiro S, Hemrika W, Renirie R, Wever R, Messerschmidt A (1999) X-ray crystal structures of active site mutants of the vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis. J Biol Inorg Chem 4(2):209–219

    Article  CAS  PubMed  Google Scholar 

  • Martinez JS, Carroll GL, Tschirret-Guth RA, Altenhoff G, Little RD, Butler A (2001) On the regiospecificity of vanadium bromoperoxidase. J Am Chem Soc 123(14):3289–3294

    Article  CAS  PubMed  Google Scholar 

  • McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Cryst D67:386–394

    Google Scholar 

  • Messerschmidt A, Prade L, Wever R (1997) Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. J Biol Chem 378:309–315

    Google Scholar 

  • Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58(5):683–692

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Littlechild J, Garcia-Rodriguez E, Isupov MN, Iida Y, Kobayashi T, Izumi Y (2004) Modification of halogen specificity of a vanadium-dependent bromoperoxidase. Protein Sci 13(6):1566–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onega M, Domarkas J, Deng H, Schweiger LF, Smith TAD, Welch AE, Plisson C, Gee AD, O’Hagan D (2010) An enzymatic route to 5-deoxy-5-[F-18]fluoro-D-ribose, a [F-18]-fluorinated sugar for PET imaging. Chem Commun 46(1):139–141

    Article  CAS  Google Scholar 

  • Podzelinska K, Latimer R, Bhattacharya A, Vining LC, Zechel DL, Jia ZC (2010) Chloramphenicol biosynthesis: The structure of CmIS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. J Mol Biol 397(1):316–331

    Article  CAS  PubMed  Google Scholar 

  • Renirie R, Hemrika W, Wever R (2000) Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis—Implications for the catalytic mechanisms. J Biol Chem 275(16):11650–11657

    Article  CAS  PubMed  Google Scholar 

  • Shaw PD, Hager LP (1959) Biological chlorination. III. beta-Ketoadipate chlorinase: a soluble enzyme system. J Biol Chem 234:2565–2569

    CAS  PubMed  Google Scholar 

  • Shimonishi M, Kuwamoto S, Inoue H, Wever R, Ohshiro T, Izumi Y, Tanabe T (1998) Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-alga, Corallina pilulifera. FEBS Lett 428(1–2):105–110

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy M, Terner J, Poulos TL (1998) Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem Biol 5(9):461–473

    Article  CAS  PubMed  Google Scholar 

  • Tapper S, Littlechild JA, Molard Y, Prokes I, Tucker JHR (2006) Anion binding tripodal receptors as structural models for the active site of vanadium haloperoxidases and acid phosphatases. Supramol Chem 18(1):55–58

    Article  CAS  Google Scholar 

  • Tschirretguth RA, Butler A (1994) Evidence for organic substrate-binding to vanadium bromoperoxidase. J Am Chem Soc 116(1):411–412

    Article  CAS  Google Scholar 

  • Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT (2006) Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem Rev 106(8):3364–3378

    Article  CAS  PubMed  Google Scholar 

  • Vanschijndel JWPM, Vollenbroek EGM, Wever R (1993) The chloroperoxidase from the fungus Curvularia-inaequalis—a novel vanadium enzyme. Biochim Biophys Acta 1161(2–3):249–256

    Article  CAS  Google Scholar 

  • Weyand M, Hecht HJ, Kiess M, Liaud MF, Vilter H, Schomburg D (1999) X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 angstrom resolution. J Mol Biol 293(3):595–611

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Moffitt MC, Zazopoulos E, McAlpine JB, Dorrestein PC, Moore BS (2007) Molecular basis for chloronium-mediated meroterpene cyclization - Cloning, sequencing, and heterologous expression of the napyradiomycin biosynthetic gene cluster. J Biol Chem 282(22):16362–16368

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284(28):18577–18581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wojaczynska E, Wojaczynski J (2010) Enantioselective synthesis of sulfoxides: 2000–2009. Chem Rev 110(7):4303–4356

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26(6):321–327

    Article  CAS  PubMed  Google Scholar 

  • Yarnell A (2006) Nature’s X-factors. Chem Eng News 84(21):12–14

    Article  Google Scholar 

  • Zaks A, Dodds DR (1995) Chloroperoxidase-catalyzed asymmetric oxidations—substrate-specificity and mechanistic study. J Am Chem Soc 117(42):10419–10424

    Article  CAS  Google Scholar 

  • Zampella G, Fantucci P, Pecoraro VL, De Gioia L (2006) Insight into the catalytic mechanism of vanadium haloperoxidases. DFT investigation of vanadium cofactor reactivity. Inorg Chem 45(18):7133–7143

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Roberge C, Reddy J, Connors N, Chartrain M, Buckland B, Greasham R (1999) Bioconversion of indene to trans-2S, 1S-bromoindanol and 1S, 2R-indene oxide by a bromoperoxidase/dehydrogenase preparation from Curvularia protuberata MF5400. Enzyme Microb Tech 24(1–2):86–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of BBSRC project grants and funding of PhD studentships associated with the vanadium bromoperoxidase project and the support of European Community’s 7th Framework Programme [FP7/2007-2013] under grant agreement No: 215009 (RedCat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Littlechild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Littlechild, J., Isupov, M. (2014). Haloperoxidase Enzymes as ‘Redox Catalysts’ Important for Industrial Biocatalysis. In: Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P., Burkholz, T. (eds) Recent Advances in Redox Active Plant and Microbial Products. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8953-0_17

Download citation

Publish with us

Policies and ethics