Skip to main content

Sedimentation Processes

  • Chapter
  • First Online:
Lake Kinneret

Part of the book series: Aquatic Ecology Series ((AQEC,volume 6))

Abstract

Sedimentation is a major process for removal of particulate material from the water column and an important determinant accounting for the stability of aquatic ecosystems. Gross sedimentation rates (GSRs) in Lake Kinneret (Israel), regularly monitored from 1999 up to date with sedimentation traps, showed salient temporal and spatial variability. In the lake center, the annual mean GSR ranged from 1.9 to 6.0 g m−2 day−1. The accumulation rate of sediments at the lake centrum during the study averaged from 2.6 to 4.3 mm year−1, in agreement with values obtained by sediment core dating. Organic matter (OM) content comprised 33–42 % of the sinking particulate matter in sediment traps located in the lake center and was 1.5–2 times lesser in peripheral stations. The highest seasonal values of OM content in traps were associated with collapse of algal blooms. Algae and their debris are the main components of OM and their fate in the water column can be well traced by photosynthetic pigments. Chlorophyte signature pigments display much lower degradability in the water column than those of diatoms and dinoflagellates and leave a relatively persistent residue in the buried sediments. Analysis of seasonal changes of algal signature pigments in the upper euphotic zone and those in sedimentation traps allow us to follow the fate of dominant algal phyla in the water column. We argue thatlarge individual algal cells may have better ability to survive in the deep non-stratified water column with limited light, while the ability to retain and recycle in the euphotic epilimnion under conditions of nutrient limitation may well confer an evolutionary advantage to small or buoyant algal populations Despite large variation in algal community composition, the ratio of OM sedimentation flux to primary production (i.e., the export ratio) alters only slightly throughout the stratified period. Approximately 20 % of the OM supplied to the lake by primary production found its way to the traps. A large decline of water level in recent years affected the processes of particle resuspension and offshore translocation, which caused prominent site-specific impacts on the sedimentation regime. We argue that changes in sedimentation rates observed in the lake are related to fluctuations of loads from the watershed and prominent water-level fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baines SB, Pace ML, Karl DM (1994) Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans? Limnol Oceanogr 39:213–226

    Article  Google Scholar 

  • Bloesch J (2004) Sedimentation and lake sediment formation. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol 2: lake restoration and rehabilitation. Blackwell, Malden, pp 197–229

    Google Scholar 

  • Bloesch J, Uehlinger U (1986) Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol Oceanogr 31:1094–1109

    Article  CAS  Google Scholar 

  • Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull T, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, VanMooy B, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570

    Article  PubMed  CAS  Google Scholar 

  • Dubowski Y, Erez J, Stiller M (2003) Isotopic paleolimnology of Lake Kinneret. Limnol Oceanogr 48:68–78

    Article  Google Scholar 

  • Eckert W, Didenko J, Uri E, Eldar D (2003) Spatial and temporal variability of particulate phosphorus fractions in seston and sediments of Lake Kinneret under changing loading scenario. Hydrobiologia 494:223–229

    Article  CAS  Google Scholar 

  • Erel Y, Dubowski Y, Halicz L, Erez J, Kaufman A (2001) Lead concentrations and isotopic ratios in the sediments of the Sea of Galilee. Environ Sci Technol 35(2):292–299

    Article  PubMed  CAS  Google Scholar 

  • Ganor E, Foner HA, Gravenhorst G (2003) The amount and nature of the dustfall on Lake Kinneret (the Sea of Galilee), Israel: flux and fractionation. Atmos Environ 37:4301–4315

    Article  CAS  Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin

    Book  Google Scholar 

  • Hambright KD, Eckert W, Leavitt PR, Schelske CL (2004) Effects of historical lake level and land use on sediment and phosphorus accumulation rates in Lake Kinneret. Environ Sci Technol 38:6460–6467

    Article  PubMed  CAS  Google Scholar 

  • Hurley JP, Armstrong DE (1990) Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol Oceanogr 35:384–398

    Article  CAS  Google Scholar 

  • Inbar M (1982) Measurement of fluvial sediment transport compared with lacustrine sedimentation rates: the flow of the River Jordan into Lake Kinneret. Hydrol Sci J 27(4):439–449

    Article  Google Scholar 

  • Klein M, Koren N (1998) The influence of the thermocline on sedimentation in the deeper part of Lake Kinneret, Israel. Limnologica 28:293–299

    CAS  Google Scholar 

  • Koren N, Klein M (2000) Rate of sedimentation in Lake Kinneret, Israel: spatial and temporal variations. Earth Surf Proc Landf 25:895–904

    Article  CAS  Google Scholar 

  • Koren N, Ostrovsky I (2002) Sedimentation in a stratified subtropical lake. Verh Int Ver Theor Angew Limnol 27:2636–2639

    Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cycle 14(4):1231–1246

    Article  CAS  Google Scholar 

  • Leavitt PR, Hodgson DA (2003) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental changes using lake sediments, vol 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 295–325

    Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95

    Article  PubMed  CAS  Google Scholar 

  • Nishri A, Koren N (1993) Sediment transport in Lake Kinneret. Verh Int Ver Theor Angew Limnol 25:290–292

    CAS  Google Scholar 

  • Ostrovsky I (2000) The upper most layer of bottom sediments: sampling and artifacts. Ergeb Limnol 55:243–256

    CAS  Google Scholar 

  • Ostrovsky I, Sukenik A (2008) Spatial heterogeneity of biogeochemical parameters in a subtropical lake. In: Mohanty PK (ed) Monitoring and modeling lakes and coastal environments. Springer, Dordrecht, The Netherland, pp 79–90

    Chapter  Google Scholar 

  • Ostrovsky I, Yacobi YZ (1999) Organic matter and pigments in surface sediments: possible mechanisms of their horizontal distributions in a stratified lake. Can J Fish Aquat Sci 56:1001–1010

    Article  CAS  Google Scholar 

  • Ostrovsky I, Yacobi YZ (2010) Sedimentation flux in a large subtropical lake: spatio-temporal variations and relation to primary productivity. Limnol Oceanogr 55:1918–1931

    Article  Google Scholar 

  • Ostrovsky I, Yacobi YZ, Walline P, Kalikhman I (1996) Seiche induced mixing: its impact on lake productivity. Limnol Oceanogr 41:323–332

    Article  Google Scholar 

  • Ostrovsky I, Wynne D, Bergstein-Ben Dan T, Nishri A, Li H, Yacobi YZ, Koren N, Parparova R (1997) Spatial distributions of biogeochemical parameters in surface sediments at the beginning of the stratified period in a subtropical lake. Water Air Soil Pollut 99:497–505

    CAS  Google Scholar 

  • Ostrovsky I, Rimmer A, Agnon Y, Koren N (2006) Sediment resuspension in the hypolimnion of Lake Kinneret (Israel): the impact of water level fluctuation. Verh Int Ver Theor Angew Limnol 29:1625–1629

    Google Scholar 

  • Ostrovsky I, Rimmer A, Yacobi YZ, Nishri A, Sukenik A, Hadas O, Zohary T (2013) Long-term changes in the Lake Kinneret ecosystem: the effects of climate change and anthropogenic factors. In: Goldman CR, Kumagai M, Robarts RD (eds) Climate change and inland waters: impacts and mitigation approaches for ecosystems and society. Wiley-Blackwell, Oxford, UK, pp 271–293

    Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rimmer A, Gal G, Opher T, Lechinsky Y, Yacobi YZ (2011) Causes for long-term variations of thermal structure in a warm lake. Limnol Oceanogr 56:974–988

    Article  Google Scholar 

  • Serruya C (1971) Lake Kinneret: the nutrient chemistry of the sediments. Limnol Oceanogr 16:510–521

    Article  CAS  Google Scholar 

  • Serruya S (1974) The mixing patterns of the Jordan River in Lake Kinneret. Limnol Oceanogr 19:175–181

    Article  Google Scholar 

  • Serruya C (1978) Sediment chemistry. In: Serruya C (ed) Lake Kinneret, momographiae biologicae. Junk, Amsterdam, pp 205–215

    Chapter  Google Scholar 

  • Serruya C, Edelstein M, Pollingher U, Serruya S (1974) Lake Kinneret sediments: nutrient composition of the pore water and mud water exchanges. Limnol Oceanogr 19:489–508

    Article  CAS  Google Scholar 

  • Shteinman B, Wynne D, Kamenir Y (2000) Study of sediment dynamics in the Jordan River-Lake Kinneret contact zone using tracer methods. The hydrology–geomorphology interface: rainfall, floods, sedimentation, land use. Proceedings of the Jerusalem Conference, May 1999. IAHS Publ. 261, pp 275–284

    Google Scholar 

  • Sobek S, Zurbrügg R, Ostrovsky I (2011) The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquat Sci 73:355–364

    Article  CAS  Google Scholar 

  • Stiller M, Assaf G (1973) Sedimentation and transport in Lake Kinneret traced by 137Cs. In: Hydrology of lakes. Proceedings Helsinki Symposium, July 1973. IAHS Publ. 109, pp 397–403

    Google Scholar 

  • Tilzer MM (1984). Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J Plankton Res 6:309–324

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wassmann P (2004) Eutrophication, primary production and vertical export. In: Wassmann P, Olli K (eds) Drainage basin nutrient inputs and eutrophication: an integrated approach. University of Tromsø, Norway, pp 126–138 (available at http://hdl.handle.net/10037/2389)

    Google Scholar 

  • Yacobi YZ (2006) Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote-sensing. J Plankton Res 28:725–736

    Article  CAS  Google Scholar 

  • Yacobi YZ, Ostrovsky I (2000) Lake Kinneret sediments: spatial distribution of chloropigments during holomixes. Arch Hydrobiol 55:457–469

    CAS  Google Scholar 

  • Yacobi YZ, Ostrovsky I (2008) Downward flux of organic matter and pigments in Lake Kinneret (Israel): relationships between phytoplankton and the material collected in sediment traps. J Plankton Res 30:1189–1202

    Article  CAS  Google Scholar 

  • Yacobi YZ, Ostrovsky I (2012) Sedimentation of phytoplankton: role of ambient conditions and life strategies of algae. Hydrobiologia 698:111–120

    Article  CAS  Google Scholar 

  • Zohary T (2004) Changes to the phytoplankton assemblage of Lake Kinneret after decades of predictable repetitive pattern. Freshw Biol 49:1355–1371

    Article  Google Scholar 

  • Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lake. Inland Waters 1:47–59

    Article  Google Scholar 

  • Zohary T, Pollingher U, Hadas O., Hambright KD (1998) Bloom dynamics and sedimentation of Peridinium gatunense in Lake Kinneret. Limnol Oceanogr 43:175–186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Ostrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ostrovsky, I., Yacobi, Y., Koren, N. (2014). Sedimentation Processes. In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8944-8_27

Download citation

Publish with us

Policies and ethics