Skip to main content

Microbial Processes Within the Nitrogen Cycle

  • Chapter
  • First Online:
Lake Kinneret

Part of the book series: Aquatic Ecology Series ((AQEC,volume 6))

Abstract

Biological processes within the nitrogen cycle in Lake Kinneret are mediated by microbial populations and seasonally and spatially divided. Changes in stratification, dissolved inorganic nitrogen (DIN), and O2 concentration in the epilimnion and hypolimnion of the lake (internal factors), in addition to external sources such as input of nitrate and organic N via the Jordan River and atmospheric deposition, all have an impact on microbial diversity and activity. Assimilation, nitrification, denitrification, ammonification, and N2 fixation are the main processes mediated by microbial populations in Lake Kinneret. Large temporal variations in the nitrogen isotopic composition (δ15N) of particulate organic matter (POM) and DIN species in Lake Kinneret occurred in response to the dominant nitrogen cycle processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res 40:1131–1140

    Article  CAS  Google Scholar 

  • Altabet MA (2006) Isotopic tracers of the marine nitrogen cycle. In: Volkman J (ed) Marine organic matter: chemical and biological markers. The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  • Alster A, Kaplan-Levy R, Sukenik A, Zohary T (2010) Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia 639:115–128

    Article  Google Scholar 

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50

    Article  CAS  Google Scholar 

  • Bergstein T, Henis Y, Cavari BZ (1981) Nitrogen fixation by the photosynthetic bacterium Chlorobium phaeobacteroides from Lake Kinneret. Appl Environ Microbiol 41:542–544

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berman T, Bronk D (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31:279–305

    Article  Google Scholar 

  • Berman T, Chava S (1999) Algal growth on organic compounds as nitrogen sources. J Plankton Res 21:1423–1437

    Article  CAS  Google Scholar 

  • Berman T, Sherr BF, Sherr E, Wynne D, McCarthy JJ (1984) The characteristics of ammonium and nitrate uptake by phytoplankton in Lake Kinneret. Limnol Oceanogr 29:287–297

    Article  CAS  Google Scholar 

  • Bernasconi SM, Barbiri A, Simona M (1997) Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol Oceanogr 42:1755–1765

    Article  CAS  Google Scholar 

  • Cavari BZ (1977) Nitrification potential and factors governing the rate of nitrification in Lake Kinneret. Oikos 28:285–290

    Article  CAS  Google Scholar 

  • Cavari BZ (1978) Bacteria of the nitrogen cycle. In: Serruya C (ed) Lake Kinneret monographiae, Junk, The Hague, pp 314–317

    Google Scholar 

  • Cavari BZ, Phelps G (1977) Denitrification in Lake Kinneret in the presence of oxygen. Freshw Biol 7:385–391

    Article  CAS  Google Scholar 

  • Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608

    Article  PubMed  CAS  Google Scholar 

  • Hadas O, Pinkas R, Albert-Diez C, Bloem J, Cappenberg T, Berman T (1990) The effect of detrital addition on the development of nanoflagellates and bacteria in Lake Kinneret. J Plankton Res 12:185–199

    Article  Google Scholar 

  • Hadas O, Pinkas R, Delphine E, Vardi A, Kaplan A, Sukenik A (1999) Limnological and ecophysiological aspects of Aphanizomenon ovalisporum bloom in Lake Kinneret, Israel. J Plankton Res 21:1439–1453

    Article  Google Scholar 

  • Hadas O, Pinkas R, Erez J (2001) High chemoautotrophic primary production in Lake Kinneret, Israel-a neglected link in the C cycle of the lake. Limnol Oceanogr 46:1968–1976

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R, Malinsky-Rushansky N, Shalev-Alon G, Delphine E, Berner , Sukenik A, Kaplan A (2002) Physiological variables determined under laboratory conditions may explain the bloom of Aphanizomenon ovalisporum in Lake Kinneret. Eur J Phycol 37:259–267

    Google Scholar 

  • Hadas O, Altabet MA, Agnihotri R (2009) Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter (POM) in Lake Kinneret, Israel. Limnol Oceanogr 54:75–85

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R, Malinsky-Rushansky N, Nishri A, Kaplan A, Rimmer A, Sukenik A (2012) Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel. Freshw Biol 57:1214–1227

    Article  CAS  Google Scholar 

  • Hochman A (1982) Studies of nitrate reductase in the fresh water dinoflagellate Peridinium cinctum. Arch Microbiol 133:62–65

    Article  CAS  Google Scholar 

  • Hochman A, Nissany A, Wynne D, Kaplan B, Berman T (1986) Nitrate reductase: an improved assay method for phytoplankton. J Plankton Res 8:385–392

    Article  CAS  Google Scholar 

  • Junier P, Kim O, Hadas O, Imhoff JF, Witzel K-P (2008) PCR primer selectivity and phylogenetic specificity evaluated using amplification of 16S rRNA genes from beta proteobacterial ammonia-oxidizing bacteria (AOB) in environmental samples. Appl Environ Microbiol 74:5231–5236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kartal B, Kuypers MM, Lavik G, Shalk J, Op denCHJ, Jetten MS, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642

    Article  PubMed  CAS  Google Scholar 

  • Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–1346

    Article  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    Article  PubMed  CAS  Google Scholar 

  • Kuypers MM, Sliekers AO, Lavik G et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JJ, Wynne D, Berman T (1982) The uptake of nitrogenous nutrients by Lake Kinneret microplankton. Limnol Oceanogr 27:673–680

    Article  CAS  Google Scholar 

  • Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165

    Article  CAS  Google Scholar 

  • Pollingher U, Hadas O, Yacobi YZ, Zohary T, Berman T (1998) Aphanizomenon ovalisporum (Forti) in Lake Kinneret (Israel). J Plankton Res 20:1321–1339

    Article  Google Scholar 

  • Rosenstock B, Simon M (2001) Sources and sinks of dissolved free amino acids and protein in a large and deep mesotrophic lake. Limnol Oceanogr 46:644–654

    Article  CAS  Google Scholar 

  • Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863

    Article  PubMed  CAS  Google Scholar 

  • Seitzinger SP, Sanders R (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar Ecol Prog Ser 159:1–12

    Article  CAS  Google Scholar 

  • Seitzinger SP, Sanders R (1999) Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol Oceanogr 44:721–730

    Article  CAS  Google Scholar 

  • Serruya C (1978) Water chemistry. In: Serruya C (ed) Lake Kinneret, Junk, The Hague, pp 185–204

    Chapter  Google Scholar 

  • Serruya C, Gophen M, Pollingher U (1980) Lake Kinneret: carbon flow patterns and ecosystem management. Arch Hydrobiol 88:265–302

    Google Scholar 

  • Sherr BF, Sherr EB, Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol 45:1196–1201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sherr BF, Sherr EB, Berman T, McCarthy JJ (1982) Differences in nitrate and ammonia uptake among components of a phytoplankton population. J Plankton Res 4:961–965

    Google Scholar 

  • Sukenik A, Hadas O, Kaplan A, Quesada A (2012) Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes-physiological, regional, and global driving forces. Front Microbiol 3:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wynne D, Berman T (1990) The influence of environmental factors on nitrate reductase activity in freshwater phytoplankton. Hydrobiologia 194:235–245

    Article  CAS  Google Scholar 

  • Zohary T (2004) Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshw Biol 49:1355–1371

    Article  Google Scholar 

  • Zohary T, Gude H, Pollingher U, Kaplan B, Pinkas R, Hadas O (2000) The role of nutrients in decomposition of a Thecate dinoflagellate. Limnol Oceanogr 45:123–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ora Hadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hadas, O. (2014). Microbial Processes Within the Nitrogen Cycle. In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8944-8_22

Download citation

Publish with us

Policies and ethics