Skip to main content

Multi-axis Capability for Powered Ankle-Foot Prostheses

  • Chapter
  • First Online:
Neuro-Robotics

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 2))

  • 2511 Accesses

Abstract

The ankle joint of lower extremity powered prostheses are generally designed to be capable of controlling a single degree of freedom (DOF) in the sagittal plane, allowing a focus on improved mobility in straight walking. However, the single DOF ankle movements are rare in normal lower limb actions such as walking on a straight path or turning when the ankle movements in both sagittal and frontal planes are significant. Therefore, the effectiveness of next-generation lower extremity prostheses may be significantly enhanced by improved understanding of the ankle dynamics in both sagittal and frontal planes during different maneuvers and by implementing strategies to account for these intricacies in prosthesis design.

In this chapter, the concept of a multi-axis powered ankle-foot prosthesis is introduced. The feasibility of this concept, to the extent allowed, by a proof of concept prototype is shown. Further, the design kinematics and its mechanical impedance in non-load bearing conditions are evaluated and discussed. It is shown that the proposed cable-driven mechanism for the multi-axis powered ankle-foot prosthesis is capable of closely mimicking the ankle movements in both sagittal and frontal planes during step turn and walking on straight path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health and Wellness for Persons with Disabilities Today (2007) Office of the Surgeon General https://www.ncbi.nlm.nih.gov/books/NBK44662/

  2. A Roadmap for US Robotics, From Internet to Robotics: Computing Community Consortium (2013) http://www.us-robotics.us/reports/CCC%20Report.pdf.

  3. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R (2008) Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 89(3):422–429

    Article  PubMed  Google Scholar 

  4. Colborne GR, Naumann S, Longmuir PE, Berbrayer D (1992) Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. Am J Phys Med Rehabil 92:272–278

    Article  Google Scholar 

  5. Molen NH (1973) Energy/speed relation of below-knee amputees walking on motor-driven treadmill. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie 31(3):173–185

    CAS  Google Scholar 

  6. Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367

    Article  CAS  PubMed  Google Scholar 

  7. Skinner HB, Effeney DJ (1985) Gait analysis in amputees. Am J Phys Med Rehabil 64:82–89

    CAS  Google Scholar 

  8. Bateni H, Olney S (2002) Kinematic and kinetic variations of below-knee amputee gait. J Prosthet Orthot 14(1):2–13

    Article  Google Scholar 

  9. Adamczyk PG, Kuo AD (2011) Asymmetry in Amputee Gait: the propagating effects of weak push-off. In: American Society of Biomechanics, Long Beach, CA

    Google Scholar 

  10. Herr HM, Grabowski AM (2010) Powered ankle-foot prosthesis improves metabolic demand of unilateral transtibial amputees during walking. In: American Society of Biomechanics, Long Beach, CA

    Google Scholar 

  11. Ferris AE, Aldridge JE, Sturdy JT, Wilken JM (2011) Evaluation of the biomimetic properties of a new powered ankle-foot prosthetic system. American Society of Biomechanics, Long Beach, CA

    Google Scholar 

  12. Glaister BC, Bernatz GC, Klute GK, Orendurff MS (2007) Video task analysis of turning during activities of daily living. Gait Posture 25(2):289–294

    Article  PubMed  Google Scholar 

  13. Ventura JD, Segal AD, Klute GK, Neptune RR (2011) Compensatory mechanisms of transtibial amputees during circular turning. Gait Posture 34:307–312

    Article  PubMed  Google Scholar 

  14. Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK (2006) The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture 23(1):106–111

    Article  PubMed  Google Scholar 

  15. Hase K, Stein RB (1999) Turning strategies during human walking. J Neurophysiol 81(6):2914–2922

    CAS  PubMed  Google Scholar 

  16. Segal AD, Orendurff MS, Czerniecki JM, Schoen J, Klute GK (2011) Comparison of transtibial amputee and non-amputee biomechanics during a common turning task. Gait Posture 33(1):41–47. doi:10.1016/j.gaitpost.2010.09.021

    Article  PubMed  Google Scholar 

  17. Glaister BC, Orendurff MS, Schoen JA, Bernatz GC, Klute GK (2008) Ground reaction forces and impulses during a transient turning maneuver. J Biomech 41(4):3090–3093

    Article  PubMed  Google Scholar 

  18. Palmer M (2002) Sagittal plane characterization of normal human ankle function across a range of walking gait speeds. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  19. Gates DH (2004) Characterizing ankle function during stair ascent, descent, and level walking for ankle prosthesis and orthosis design. Boston University, Boston

    Google Scholar 

  20. Davis R, DeLuca P (1996) Gait characterization via dynamic joint stiffness. Gait Posture 4(3):224–231

    Article  Google Scholar 

  21. Hansena AH, Childress DS, Miff SC, Gard SA, Mesplay KP (2004) The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 37:1467–1474

    Article  Google Scholar 

  22. Collins SH, Kuo AD (2010) Recycling energy to restore impaired ankle function during human walking. PLoS One 5(2)

    Google Scholar 

  23. Donelan JM, Kram R, Kuo AD (2002) Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 205:3717–3727

    PubMed  Google Scholar 

  24. Donelan JM, Kram R, Kuo AD (2002) Simultaneous positive and negative external work in human walking. J Biomech 35:117–124

    Article  PubMed  Google Scholar 

  25. Ruina A, Bertram JE, Srinivasan M (2005) A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudoelastic leg behavior in running and the walk-to-run transition. J Theor Biol 237(2):170–192

    Article  PubMed  Google Scholar 

  26. Kuo AD (2002) Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng 124:113–120

    Article  PubMed  Google Scholar 

  27. Kuo AD, Donelan JM, Ruina A (2005) Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev 33:88–97

    Article  PubMed  Google Scholar 

  28. Klute GK, Czerniecki J, Hannaford B (1998) Development of powered prosthetic lower limb. In: Proceedings of the 1st national meeting, Veterans Affairs Rehabilitation Research and Development Service, Washington, D.C.

    Google Scholar 

  29. Goldfarb M (2010) Powered robotic legs – leaping toward the future. National Institute of Biomedical Imaging and Bioengineering. http://www.nibib.nih.gov/news-events/newsroom/powered-robotic-legs-leaping-toward-future

  30. Sup F, Bohara A, Goldfarb M (2008) Design and control of a powered transfemoral prosthesis. Int J Robot Res 27:263–273

    Article  Google Scholar 

  31. Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M (2009) Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE ASME Trans Mechatron 14(6):667–676

    Article  PubMed Central  PubMed  Google Scholar 

  32. Iv FCS (2009) A powered self-contained knee and ankle prosthesis for near normal gait in transfemoral amputees. Vanderbilt University, Nashville

    Google Scholar 

  33. Hitt J, Merlo J, Johnston J, Holgate M, Boehler A, Hollander K, Sugar T (2010) Bionic running for unilateral transtibial military amputees. In: 27th Army Science Conference (ASC), Orlando, Florida

    Google Scholar 

  34. Hitt JK, Sugar TG, Holgate M, Bellman R (2010) An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Devices 4(1):011003

    Article  Google Scholar 

  35. Au SK (2007) Powered ankle-foot prosthesis for the improvement of amputee walking economy. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  36. Au S, Herr H (2008) Powered ankle-foot prosthesis. Robot Autom Mag 15(3):52–59

    Article  Google Scholar 

  37. Au S, Weber J, Herr H (2009) Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans Robot 25(1):51–66

    Article  Google Scholar 

  38. BiOM (2013) Personal bionics http://www.biom.com/

  39. Eilenberg MF, Geyer H, Herr H (2010) Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng 18(2):164–173

    Article  PubMed  Google Scholar 

  40. Bionic Technology with Powered Plantar Flexion (2012) http://www.iwalkpro.com/Prosthetists.html

  41. The technology behind the PROPRIO FOOT® from Össur (2012) http://www.ossur.com/?PageID=15736

  42. Endolite, élan (2012) http://www.endolite.com/products/elan

  43. Au SK, Herr H, Weber J, Martinez-Villalpando EC (2007) Powered ankle-foot prosthesis for the improvement of amputee ambulation. In: International conference of the IEEE, Engineering in Medicine and Biology Society, Lyon

    Google Scholar 

  44. Herr HM, Grabowski AM (2012) Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci 279(1728):457–464. doi:10.1098/rspb.2011.1194

    Article  PubMed Central  PubMed  Google Scholar 

  45. Grabowski AM, D’Andrea S (2013) Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J NeuroEng Rehabil 10(1):49

    Article  PubMed Central  PubMed  Google Scholar 

  46. Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15–30

    Article  PubMed  Google Scholar 

  47. Harlaar J, Becher J, Snijders C, Lankhorst G (2000) Passive stiffness characteristics of ankle plantar flexors in hemiplegia. Clin Biomech 15(4):261–270

    Article  CAS  Google Scholar 

  48. Singer B, Dunne J, Singer K, Allison G (2002) Evaluation of triceps surae muscle length and resistance to passive lengthening in patients with acquired brain injury. Clin Biomech 17(2):151–161

    Article  Google Scholar 

  49. Chung SG, Rey E, Bai Z, Roth EJ, Zhang L-Q (2004) Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil 85(10):1638–1646

    Article  PubMed  Google Scholar 

  50. Rydahl SJ, Brouwer BJ (2004) Ankle stiffness and tissue compliance in stroke survivors: a validation of myotonometer measurements. Arch Phys Med Rehabil 85(10):1631–1637

    Article  PubMed  Google Scholar 

  51. Kobayashi T, Leung AKL, Akazawa Y, Tanaka M, Hutchins SW (2010) Quantitative measurements of spastic ankle joint stiffness using a manual device: a preliminary study. J Biomech 43(9):1831–1834

    Article  PubMed  Google Scholar 

  52. Lamontagne A, Malouin F, Richards CL (1997) Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J Orthop Sports Phys Ther 26(5):244–252

    Article  CAS  PubMed  Google Scholar 

  53. Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech 15(10):742–752

    Article  Google Scholar 

  54. Kearney RE, Hunter IW (1982) Dynamics of human ankle stiffness: variation with displacement amplitude. J Biomech 15(10):753–756

    Article  CAS  PubMed  Google Scholar 

  55. Kearney RE, Hunter IW (1990) System identification of stretch reflex dynamics. Crit Rev Biomed Eng 18:55–87

    CAS  PubMed  Google Scholar 

  56. Weiss PL, Kearney RE, Hunter IW (1986) Position dependence of ankle joint dynamics—I. Passive mechanics. J Biomech 19(9):727–735

    Article  CAS  PubMed  Google Scholar 

  57. Weiss PL, Kearney RE, Hunter IW (1986) Position dependence of ankle joint dynamics—II. Active mechanics. J Biomech 19(9):737–751

    Article  CAS  PubMed  Google Scholar 

  58. Kearney RE, Stein RB, Parameswaran L (1997) Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng 44(6):493–504

    Article  CAS  PubMed  Google Scholar 

  59. Kirsch RF, Kearney RE (1997) Identification of time-varying stiffness dynamics of the human ankle joint during an imposed movement. Exp Brain Res 114:71–85

    Article  CAS  PubMed  Google Scholar 

  60. Mirbagheri MM, Kearney RE, Barbeau H (1996) Quantitative, objective measurement of ankle dynamic stiffness: intra-subject reliability and intersubject variability. In: 18th annual international conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam

    Google Scholar 

  61. Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1998) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60(3):1110–1121

    Google Scholar 

  62. Roy A, Krebs HI, Williams DJ, Bever CT, Forrester LW, Macko RM, Hogan N (2009) Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot Automation 25(3):569–582

    Article  Google Scholar 

  63. Saripalli A, Wilson S (2005) Dynamic ankle stability and ankle orientation. 7th symposium on footwear biomechanics conference, Cleveland, OH

    Google Scholar 

  64. Zinder SM, Granata KP, Padua DA, Gansneder BM (2007) Validity and reliability of a new in vivo ankle stiffness measurement device. J Biomech 40:463–467

    Article  PubMed  Google Scholar 

  65. Fitzpatrick RC, Taylor JL, McCloskey DI (1992) Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task-dependent components. J Physiol 454:533–547

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Loram ID, Lakie M (2002) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540(3):1111–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Loram ID, Lakie M (2002) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545(3):1041–1053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sasagawa S, Ushiyama J, Masani K, Kouzaki M, Kanehisa H (2009) Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces. Exp Brain Res 196(4):537–544

    Article  PubMed  Google Scholar 

  69. Winter DA, Patla AE, Rietdyk S, Ishac MG (2001) Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85(6):2630–2633

    CAS  PubMed  Google Scholar 

  70. Morasso PG, Sanguineti V (2002) Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J Neurophysiol 88(4):2157–2162

    PubMed  Google Scholar 

  71. Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS One 8(3):e59935. doi:10.1371/journal.pone.0059935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Farley CT, Blickhan R, Saito J, Taylor CR (1991) Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol 71:2127–2132

    CAS  PubMed  Google Scholar 

  73. Farley CT, González O (1996) Leg stiffness and stride frequency in human running. J Biomech 29(2):181–186

    Article  CAS  PubMed  Google Scholar 

  74. Rouse EJ, Hargrove LJ, Peshkin MA, Kuiken TA (2011) Design and validation of a platform robot for determination of ankle impedance during ambulation. In: Conference proceedings of the IEEE Engineering in Medicine and Biology Society. Boston, MA, USA

    Google Scholar 

  75. Rouse E, Hargrove L, Perreault E, Kuiken T (2012) Estimation of human ankle impedance during walking using the Perturberator Robot. Paper presented at the fourth IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, Roma, Italy

    Google Scholar 

  76. Rouse E, Hargrove L, Perreault E, Peshkin M, Kuiken T (2013) Development of a robotic platform and validation of methods for estimating ankle impedance during the stance phase of walking. J Biomech Eng 135(8):1009-1–1009-8

    Google Scholar 

  77. Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, Lundgren P, Lundberg A (2007) Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech 40:2672–2678

    Article  CAS  PubMed  Google Scholar 

  78. Rastgaar M, Ho P, Lee H, Krebs HI, Hogan N (2009) Stochastic estimation of multi-variable human ankle mechanical impedance. In: ASME dynamic systems and control conference, Hollywood, CA

    Google Scholar 

  79. Rastgaar M, Ho P, Lee H, Krebs HI, Hogan N (2010) Stochastic estimation of the multi-variable mechanical impedance of the human ankle with active muscles. In: ASME dynamic systems and control conference, Boston, MA

    Google Scholar 

  80. Lee H, Ho P, Krebs HI, Hogan N (2009) The multi-variable torque-displacement relation at the ankle. In: ASME dynamic systems and control conference, Hollywood, CA

    Google Scholar 

  81. Lee H, Ho P, Rastgaar M, Krebs HI, Hogan N (2010) Quantitative characterization of steady-state ankle impedance with muscle activation. In: ASME dynamic systems and control conference, Cambridge, MA

    Google Scholar 

  82. Lee H, Ho P, Rastgaar M, Krebs HI, Hogan N (2011) Multivariable static ankle mechanical impedance with relaxed muscles. J Biomech 44:1901–1908

    Article  PubMed  Google Scholar 

  83. Lee H, Ho P, Rastgaar M, Krebs HI, Hogan N (2014) Multivariable static ankle mechanical impedance with active muscles. IEEE Trans Neural Syst Rehabil Eng 22(1):44–52

    Article  Google Scholar 

  84. Ho P, Lee H, Krebs HI, Hogan N (2009) Directional variation of active and passive ankle static impedance. Paper presented at the ASME dynamic systems and control conference, Hollywood, CA

    Google Scholar 

  85. Ho P, Lee H, Rastgaar M, Krebs HI, Hogan N (2010) The interpretation of the directional properties of voluntarily modulated human ankle impedance. In: ASME dynamic systems and control conference, Cambridge, MA

    Google Scholar 

  86. Lee H, Krebs HI, Hogan N (2012) Linear time-varying identification of ankle mechanical impedance during human walking. In: ASME 2012 5th annual dynamic systems and control conference, Fort Lauderdale, FL, USA

    Google Scholar 

  87. Taylor MJD, Dabnichki P, Strike SC (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24:558–573

    Article  CAS  PubMed  Google Scholar 

  88. A Roadmap for US Robotics, From Internet to Robotics. (Computing Community Consortium, May 21, 2009). http://www.us-robotics.us/reports/CCC%20Report.pdf

  89. Ficanha EM, Rastgaar M, Modirian B, Mahmoudian N (2013) Ankle Angles during Step Turn and Straight Walk: implications for the design of a steerable ankle-foot Prosthetic Robot. In: Dynamic systems and controls conference Stanford University, Palo Alto, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rastgaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ficanha, E.M., Rastgaar, M., Kaufman, K.R. (2014). Multi-axis Capability for Powered Ankle-Foot Prostheses. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_4

Download citation

Publish with us

Policies and ethics