Skip to main content

Home-Based Rehabilitation: Enabling Frequent and Effective Training

  • Chapter
  • First Online:
Neuro-Robotics

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 2))

Abstract

Rehabilitation studies have recently demonstrated that the amount of time spent training is one of the most important factors in one’s ability to regain motor control. The methods employed need to be effective, but individuals need to spend significant amounts of time retraining. One of the most effective ways to enable more training time is for rehabilitation to occur in one’s home so individuals have adequate access to it and there is no cost associated with traveling to the clinic. There are several challenges that need to be overcome to make home rehabilitation more common; for example adapting the methods from the clinical setting to the home setting, ensuring safety, and providing motivation. This chapter outlines existing technologies for upper and lower limb rehabilitation and how they could be adapted for use in one’s home. Although many types of disabilities would benefit from home-based rehabilitation, this discussion will focus on traumatic brain injuries, specifically stroke related. Many of the methods that could be used at home for stroke would also have application for helping in other circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang V, Krakauer J (2009) Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil 6(1):5

    PubMed Central  PubMed  Google Scholar 

  2. Tyson S, Turner G (2000) Discharge and follow-up for people with stroke: what happens and why. Clin Rehabil 14(4):381–392

    CAS  PubMed  Google Scholar 

  3. Gregory P, Edwards L, Faurot K, Williams S, Felix A (2010) Patient preferences for stroke rehabilitation. Top Stroke Rehabil 17(5):394–400

    PubMed  Google Scholar 

  4. Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H (2002) Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 82(9):898–915

    PubMed  Google Scholar 

  5. Legg L, Langhorne P (2004) Rehabilitation therapy services for stroke patients living at home: systematic review of randomised trials. Lancet 363:352–356

    CAS  PubMed  Google Scholar 

  6. Ryan T, Enderby P, Rigby AS (2006) A randomized controlled trial to evaluate intensity of community-based rehabilitation provision following stroke or hip fracture in old age. Clin Rehabil 20(2):123–131

    PubMed  Google Scholar 

  7. Corrigan J (1994) Community integration following traumatic brain injury. NeuroRehabilitation 4(2):109–121

    CAS  PubMed  Google Scholar 

  8. Benson DM, Elbaum J (2007) Long-term challenges. In: Elbaum J, Benson DM (eds) Acquired brain injury. Springer, New York, pp 286–292

    Google Scholar 

  9. Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ (2009) A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the extremity constraint-induced therapy evaluation (excite) trial. Phys Ther 89(12):1327–1336

    PubMed Central  PubMed  Google Scholar 

  10. Fluet M-C, Lambercy O, Gassert R (2011) Upper limb assessment using a virtual peg insertion test. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, pp 192–197

    Google Scholar 

  11. Kollen BJ, Lennon S, Lyons B, Wheatley-Smith L, Scheper M, Buurke JH, Halfens J, Geurts AC, Kwakkel G (2009) The effectiveness of the bobath concept in stroke rehabilitation what is the evidence? Stroke 40(4):e89–e97

    PubMed  Google Scholar 

  12. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121

    PubMed Central  PubMed  Google Scholar 

  13. Marchal-Crespo L, Reinkensmeyer D (2009) Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 6(1):20

    PubMed Central  PubMed  Google Scholar 

  14. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Trafton A (2010) Robotic therapy helps stroke patients regain function. http://web.mit.edu/newsoffice/2010/stroke-therapy-0419.html. Accessed 4 Apr 2013

  16. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C et al (2010) Heart disease and stroke statistics–2010 update a report from the american heart association. Circulation 121(7):e46–e215

    PubMed  Google Scholar 

  17. Association AH et al (2005) Heart disease and stroke statistics–2005 update. American Heart Association, Dallas. This is an informative list of recent stroke statistics on incidence, prevalence, and mortality in the United States, 2004

    Google Scholar 

  18. Faul M, Xu L, Wald M, Coronado V (2010) Traumatic brain injury in the united states: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Google Scholar 

  19. Selassie AW, Zaloshnja E, Langlois JA, Miller T, Jones P, Steiner C (2008) Incidence of long-term disability following traumatic brain injury hospitalization, united states, 2003. J Head Trauma Rehabil 23(2):123–131

    PubMed  Google Scholar 

  20. Zaloshnja E, Miller T, Langlois JA, Selassie AW (2008) Prevalence of long-term disability from traumatic brain injury in the civilian population of the united states, 2005. J Head Trauma Rehabil 23(6):394–400

    PubMed  Google Scholar 

  21. Corrigan JD, Selassie AW, Orman JAL (2010) The epidemiology of traumatic brain injury. J Head Trauma Rehabil 25(2):72–80

    PubMed  Google Scholar 

  22. Bobath B (1970) Adult hemiplegia: evaluation and treatment. Heinemann Medical Books, London

    Google Scholar 

  23. Knott M, Voss D (1968) Proprioceptive neuromuscular facilitation: patterns and techniques, 2nd edn. Harper & Row, New York

    Google Scholar 

  24. Oden R (1918) Systematic therapeutic exercises in the management of the paralyses in hemiplegia. JAMA 23:828–833

    Google Scholar 

  25. Taub E, Uswatte G, Pidikiti R (1999) Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation–a clinical review. J Rehabil Res 36(3):237–251

    CAS  Google Scholar 

  26. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296(17):2095–2104

    CAS  PubMed  Google Scholar 

  27. Lacquaniti F, Maioli C (1992) Distributed control of limb position and force. In: Stelmach GE, Requin J (ed) Tutorials in motor behavior II. North-Holland, Amsterdam/ New York/Distributors for the U.S. and Canada, Elsevier Science, New York, pp 31–54

    Google Scholar 

  28. Karniel A, Meir R, Inbar GF (1999) Exploiting the virtue of redundancy. In: International joint conference on neural networks, Washington, DC

    Google Scholar 

  29. Glynn S, Fekieta R, Henning R (2001) Use of force-feedback joysticks to promote teamwork in virtual teleoperation. In: Virtual teleoperation proceedings of the human factors and ergonomics society 45th annual meeting, Minneapolis/St. Paul

    Google Scholar 

  30. Shergill SS, Bays PM, Frith CD, Wolpert DM (2003) Two eyes for an eye: the neuroscience of force escalation. Science 301:187

    CAS  PubMed  Google Scholar 

  31. Valles N, Reed KB, To know your own strength: overriding natural force attenuation. IEEE Trans Haptics. doi:10.1109/TOH.2013.55

    Google Scholar 

  32. Pan P, Lynch KM, Peshkin MA, Colgate JE (2004) Static single-arm force generation with kinematic constraints. In: Proceedings of the IEEE international conference on robotics and automation ICRA ’04, New Orleans, vol 3, pp 2794–2800

    Google Scholar 

  33. Reed KB, Peshkin MA, Hartmann MJ, Grabowecky M, Patton J, Vishton PM (2006) Haptically linked dyads: are two motor-control systems better than one? Psychol Sci 17(5):365–366

    PubMed  Google Scholar 

  34. Reed KB, Peshkin MA (2008) Physical collaboration of human-human and human-robot teams. IEEE Trans Haptics 1(2):108–120

    Google Scholar 

  35. Krebs H, Ferraro M, Buerger S, Newbery M, Makiyama A, Sandmann M, Lynch D, Volpe B, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J Neuroeng Rehabil 1(1):5

    PubMed Central  PubMed  Google Scholar 

  36. Timmermans A, Seelen H, Willmann R, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 6(1). doi:10.1186/1743-0003-6-1

    Google Scholar 

  37. Kahn L, Zygman M, Rymer WZ, Reinkensmeyer D (2006) Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 3(1):12

    PubMed Central  PubMed  Google Scholar 

  38. Liepert J, Uhde I, Gräf S, Leidner O, Weiller C (2001) Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. J Neurol 248:315–321

    CAS  PubMed  Google Scholar 

  39. Wittenberg GF, Chen R, Ishii K, Bushara KO, Taub E, Gerber LH, Hallett M, Cohen LG (2003) Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 17(1):48–57

    PubMed  Google Scholar 

  40. Schmidt RA, Bjork RA (1992) New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychol Sci 3(4):207–217

    Google Scholar 

  41. Reed KB (2007) Understanding the haptic interactions of working together. Ph.D. thesis, Northwestern University

    Google Scholar 

  42. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168:368–383

    PubMed  Google Scholar 

  43. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):e179

    PubMed Central  PubMed  Google Scholar 

  44. Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev Neurosci 12(12):739–751

    CAS  PubMed  Google Scholar 

  45. Abe M, Schambra H, Wassermann EM, Luckenbaugh D, Schweighofer N, Cohen LG (2011) Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr Biol 21(7):557–562

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70(4):787–801

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Holden MK, Dyar TA, Dayan-Cimadoro L (2007) Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans Neural Syst Rehabil Eng 15(1):36–42

    PubMed  Google Scholar 

  48. Weiss P, Rand D, Katz N, Kizony R (2004) Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil 1(1):12

    PubMed Central  PubMed  Google Scholar 

  49. Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil 14(2):52–61

    PubMed  Google Scholar 

  50. Cameirão MS, Bermudez i Badia S, Oller ED, Verschure PF (2008) Using a multi-task adaptive vr system for upper limb rehabilitation in the acute phase of stroke. In: Virtual rehabilitation, Vancouver. IEEE, pp 2–7

    Google Scholar 

  51. Broeren J, Sunnerhagen KS, Rydmark M (2007) A kinematic analysis of a haptic handheld stylus in a virtual environment: a study in healthy subjects. J Neuroeng Rehabil 4(1):13

    PubMed Central  PubMed  Google Scholar 

  52. Bouzit M, Burdea G, Popescu G, Boian R (2002) The rutgers master II-new design force-feedback glove. IEEE/ASME Trans Mechatron 7(2):256–263

    Google Scholar 

  53. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14:378–389

    PubMed  Google Scholar 

  54. Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514

    PubMed  Google Scholar 

  55. Rotella MF, Guerin K, He X, Okamura AM (2012) Hapi bands: a haptic augmented posture interface. In: 2012 IEEE haptics symposium (HAPTICS), Vancouver. IEEE, pp 163–170

    Google Scholar 

  56. Kuchenbecker KJ, Gurari N, Okamura AM (2007) Effects of visual and proprioceptive motion feedback on human control of targeted movement. In: IEEE 10th international conference on rehabilitation robotics (ICORR 2007), Noordwijk. IEEE, pp 513–524

    Google Scholar 

  57. Zheng H, Davies R, Zhou H, Hammerton J, Mawson SJ, Ware PM, Black ND, Eccleston C, Hu H, Stone T, Mountain GA, Harris ND (2006) Smart project: application of emerging information and communication technology to homebased rehabilitation for stroke patients. Int J Disabil Human Dev Spec Issue Adv Virtual Real Ther Rehabil 5(3):271–276

    Google Scholar 

  58. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC (2001) Java therapy: web-based robotic rehabilitation. Integr Assist Technol Inf Age 9:66–71

    Google Scholar 

  59. Feng X, Johnson M, Johnson L, Winters J (2005) A suite of computer-assisted techniques for assessing upper-extremity motor impairments. Conf Proc IEEE Eng Med Biol Soc 7:6867–6870

    CAS  PubMed  Google Scholar 

  60. Johnson M, Feng X, Johnson L, Winters J (2007) Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J Neuroeng Rehabil 4(1):6

    PubMed Central  PubMed  Google Scholar 

  61. Johnson M, Van der Loos H, Burgar C, Shor P, Leifer L (2005) Experimental results using force-feedback cueing in robot-assisted stroke therapy. IEEE Trans Neural Syst Rehabil Eng 13:335–348

    PubMed  Google Scholar 

  62. Johnson M, Ramachandran B, Paranjape R, Kosasih J (2006) Feasibility study of theradrive: a low-cost game-based environment for the delivery of upper arm stroke therapy. Proc IEEE Eng Med Biol Soc 1:695–698

    Google Scholar 

  63. Westhoff T, Schmidt S, Gross V, Joppke M, Zidek W, der Giet MV, Dimeo F (2008) The cardiovascular effects of upper-limb aerobic exercise in hypertensive patients. J Hypertens 26:1336–1342

    CAS  PubMed  Google Scholar 

  64. Diserens K, Perret N, Chatelain S, Bashir S, Ruegg D, Vuadens P, Vingerhoets F (2007) The effect of repetitive arm cycling on post stroke spasticity and motor control: repetitive arm cycling and spasticity. J Neurol Sci 253(3):18–24

    CAS  PubMed  Google Scholar 

  65. Zehr EP, Loadman P, Hundza SR (2012) Neural control of rhythmic arm cycling after stroke. J Neurophysiol 108:891–905

    PubMed Central  PubMed  Google Scholar 

  66. Burgar C, Lum P, Shor P, Van der Loos H (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37:663–674

    CAS  PubMed  Google Scholar 

  67. Wolf SL, LeCraw DE, Barton LA (1989) Comparison of motor copy and targeted biofeedback training techniques for restitution of upper extremity function among patients with neurologic disorders. Phys Ther 69(9):719–735

    CAS  PubMed  Google Scholar 

  68. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84(6):915–920

    PubMed  Google Scholar 

  69. Yang C, Lin K, Chen H, Wu C, Chen C (2012) Pilot comparative study of unilateral and bilateral robotassisted training on upper-extremity performance in patients with stroke. Am J Occup Ther 66(2):198–206

    PubMed  Google Scholar 

  70. Whitall J, Waller S, Silver K, Macko R (2000) Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31(10):2390–2395

    CAS  PubMed  Google Scholar 

  71. Whitall J, Waller S, Sorkin J, Forrester L, Macko R, Hanley D, Goldberg A, Luft A (2011) Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil Neural Repair 25(2):118–129

    PubMed Central  PubMed  Google Scholar 

  72. Hesse S, Werner C, Pohl M, Mehrholz J, Puzich U, Krebs HI (2008) Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. Am J Phys Med Rehabil 87(10):779–788

    CAS  PubMed  Google Scholar 

  73. Jordan K, Sampson M, Hijmans J, King M, Hale L (2011) Imable system for upper limb stroke rehabilitation. In: 2011 international conference on virtual rehabilitation (ICVR), Zurich, June 2011, pp 1–2

    Google Scholar 

  74. Malabet HG, Robles RA, Reed KB (2010) Symmetric motions for bimanual rehabilitation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, pp 5133–5138

    Google Scholar 

  75. McAmis S, Reed KB (2011) Symmetry modes and stiffnesses for bimanual rehabilitation. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, June 2011, pp 1106–1111

    Google Scholar 

  76. McAmis S, Reed KB (2012) Simultaneous perception of forces and motions using bimanual interactions. IEEE Trans Haptics 5(3):220–230

    Google Scholar 

  77. McAmis S, Reed KB (2013) Design and analysis of a compliant bimanual rehabilitation device. In: Proceedings of the IEEE international conference on rehabilitation robotics, Seattle, June 2013

    Google Scholar 

  78. McAmis S, Reed KB (2013) Effects of compliant coupling on cooperative and bimanual task performance. J Rehabil Robot 1(2):99–108.

    Google Scholar 

  79. Brandstater M, de Bruin H, Gowland C, Clark B (1983) Hemiplegic gait: analysis of temporal variables. Arch Phys Med Rehabil 64:583–587

    CAS  PubMed  Google Scholar 

  80. Wall J, Turnbull G (1986) Gait asymmetries in residual hemiplegia. Arch Phys Med Rehabil 67:550–553

    CAS  PubMed  Google Scholar 

  81. Belda-Lois JM, del Homo M, Bermejo-Bosch I, Moreno JC, Pons J, Farina D, Losa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 8:66

    PubMed Central  PubMed  Google Scholar 

  82. Teixeira-Salmela L, Nadeau S, Mcbride I, Olney S (2001) Effects of muscle strengthening and physical conditioning training on temporal kinematic and kinetic variables in gait stroke survivors. J Rehabil Med 33:53–60

    CAS  PubMed  Google Scholar 

  83. Teixeira-Salmela L, Olney SJ, Nadeau S, Brouwer B (1999) Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil 80(10):1211–1218

    CAS  PubMed  Google Scholar 

  84. Stern P, McDowell F, Miller J, Robinson M (1970) Effects of facilitation exercise techniques in stroke rehabilitation. Arch Phys Med Rehabil 51:526–31

    CAS  PubMed  Google Scholar 

  85. Lennon S (1996) The bobath concept: a critical review of the theoretical assumptions that guide physiotherapy practice in stroke rehabilitation. Phys Ther Rev 1:35–45

    Google Scholar 

  86. Perfetti C (2001) L’exercice Thérapeutique Cognitif Pour La Rééducation Du Patient Hémiplégique. Masson

    Google Scholar 

  87. Carr JH, Shepherd RB (2003) Stroke rehabilitation: guidelines for exercice and training to optimiza motor skill, 1st edn. Elsevier Health Sciences. Butterworth-Heinemann

    Google Scholar 

  88. Hesse S, Bertelt C, Jahnke M, Schaffrin A, Baake P, Malezic M, Mauritz KH (1995) Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 26:976–81

    CAS  PubMed  Google Scholar 

  89. Bates B, Choi J, Duncan P, Glasberg J, Graham G, Katz R, Lamberty K, Reker D, Zorowitz R (2005) Veterans affairs/department of defense clinical practice guideline for the management of adult stroke rehabilitation care. Stroke 36:2049–2056

    PubMed  Google Scholar 

  90. States R, Salem Y, Pappas E (2009) Overground gait training for individuals with chronic stroke: a cochrane systematic review. J Neurol 33:179–86

    Google Scholar 

  91. Moseley A, Stark A, Cameron I, Pollock A (2005) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 19. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002840.pub2/abstract

  92. Jette D, Latham N, Smout R, Gassaway J, Slavin M, Horn S (2005) Physical therapy interventions for patients with stroke in inpatient rehabilitation facilities. Phys Ther 85:238–248

    PubMed  Google Scholar 

  93. Carrillo-de-la-Pena MT et al (2008) Equivalent is not equal: primary motor cortex (mi) activation during motor imagery and execution of sequential movements. Brain Res 1226(0):134–143

    Google Scholar 

  94. Dunsky A, Dickstein R, Marcovitz E, Levy S, Deutsch J (2008) Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehab 89:1580–1588

    Google Scholar 

  95. Malouin F, Richards C (2010) Mental practice for relearning locomotor skills. Phys Ther 90:240–251

    PubMed  Google Scholar 

  96. Dohring M, Janis J (2008) Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training. IEEE Trans Neural Syst Rehabil Eng 16(3):310–313

    PubMed  Google Scholar 

  97. Barbeau H, Visintin M (2003) Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 84:1458–1465

    PubMed  Google Scholar 

  98. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13(3):380–394

    PubMed  Google Scholar 

  99. Bogey R, Hornby G (2007) Gait training strategies utilized in poststroke rehabilitation: are we really making a difference? Top Stroke Rehabil 14:1–8

    PubMed  Google Scholar 

  100. Colombo G (2000) The lokomat: a driven ambulatory orthosis. Med Orthop Technol 6:178–181

    Google Scholar 

  101. Swinnen E, Duerinck S, Baeyens J, Meeusen R, Kerckhofs E (2010) Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil 42:520–526

    Google Scholar 

  102. Duschau-Wicke A (2010) Path control: a method for patient-cooperative robot-aided gait rehabilitation. Trans Neural Syst Rehabil Eng 18:38–48

    Google Scholar 

  103. Kim S, Banala S, Brackbill E, Agrawal S, Krishnamoorthy V, Scholz J (2010) Robot-assisted modifications of gait in healthy individuals. Exp Brain 202(4):809–824

    Google Scholar 

  104. Monaco V, Galardi G, Jung J, Bagnato S, Boccagni C, Micera S (2009) A new robotic platform for gait rehabilitation of bedridden stroke patients. In: IEEE international conference on rehabilitation robotics, ICORR 2009, Kyoto, pp 383–388

    Google Scholar 

  105. Monaco V, Jung JH, Macrì G, Bagnato S, Micera S, Carrozza MC, Galardi G (2008) Robotic system for gait rehabilitation of stroke patients during the acute phase. Gerontechnology 7:2

    Google Scholar 

  106. Kamps A, Schule K (2005) Cyclic movement training of the lower limb in stroke rehabilitation. Neurol Rehabil 11:1–12

    Google Scholar 

  107. Laupheimer M, Hartel S, Schmidt S (2011) Forced exercise effects of motomed®training on parkinson’s- typical motor dysfunctions. Neurol Rehabil 17:239–246

    Google Scholar 

  108. Diehl W, Schüle K, Kaiser T (2008) Use of an assistive movement training apparatus in the rehabilitation of geriatric patients. NeuroGeriatrie 5(1):3–12

    Google Scholar 

  109. Kim SH, Reed KB (2013) Robot-assisted balance training for gait modification. In: Proceedings of the IEEE international conference on rehabilitation robotics, Seattle, June 2013

    Google Scholar 

  110. Sulzer J, Gordon K, Hornby TG, Peshkin M, Patton J (2009) Adaptation to knee flexion torque during gait. In: Proceedings of the IEEE international conference on rehabilitation robotics, Kyoto, pp 713–718

    Google Scholar 

  111. Reisman D, Wityk R, Silver K, Bastian A (2007) Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 130(7):1861–1872

    PubMed Central  PubMed  Google Scholar 

  112. Choi JT, Vining EPG, Reisman DS, Bastian AJ (2009) Walking flexibility after hemispherectomy: split-belt treadmill adaptation and feedback control. Brain 132:722–733

    PubMed Central  PubMed  Google Scholar 

  113. Reisman DS, Wityk R, Silver K, Bastian AJ (2009) Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair 23:735–744

    PubMed Central  PubMed  Google Scholar 

  114. Reisman D, McLean H, Keller J, Danks K, Bastian A (2013) Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabilitation 27:460–468

    Google Scholar 

  115. Torres-Oviedo G, Bastian AJ (2010) Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation. J Neurosci 30(50):17015–17022

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Bunday KL, Bronstein AM (2009) Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy. J Neurophysiol 102:3119–3128

    PubMed Central  PubMed  Google Scholar 

  117. Handz̆ić I, Reed KB (2013) Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, via the gait enhancing mobile shoe (GEMS). In: Proceedings of the IEEE international conference on rehabilitation robotics, Seattle, June 2013

    Google Scholar 

  118. de Groot A, Decker R, Reed KB (2009) Gait enhancing mobile shoe (GEMS) for rehabilitation. In: Proceedings of joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, Salt Lake City, Mar 2009, pp 190–195

    Google Scholar 

  119. Handz̆ić I, Barno E, Vasudevan EV, Reed KB (2011) Design and pilot study of a gait enhancing mobile shoe. J Behav Robot 2(4):193–201

    Google Scholar 

  120. Handz̆ić I, Reed KB (2011) Motion controlled gait enhancing mobile shoe for rehabilitation. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, June 2011, pp 583–588

    Google Scholar 

  121. Handz̆ić I, Reed K (2014) Kinetic shapes: analysis, verification, and applications. J Mech Des 136(6)

    Google Scholar 

  122. Gibson-Horn C (2008) Balance-based torso-weighting in a patient with ataxia and multiple sclerosis: a case report. J Neurol Phys Ther 32(3):139–146

    PubMed  Google Scholar 

  123. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Google Scholar 

  124. Honeycutt C, Sushko J, Reed KB (2011) Asymmetric passive dynamic walker. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, June 2011, pp 852–857

    Google Scholar 

  125. Margaria R (1976) Biomechanics and energetics of muscular exercise. Clarendon, Oxford

    Google Scholar 

  126. Chen VFH (2005) Passive dynamic walking with knees: a point foot model. Master’s thesis, Massachusetts Institute of Technology

    Google Scholar 

  127. Sushko J, Honeycutt C, Reed KB (2012) Prosthesis design based on an asymmetric passive dynamic walker. In: Proceedings of the IEEE conference on Biorob, Roma, June 2012, pp 1116–1121

    Google Scholar 

  128. Handz̆ić I, Reed KB (2013) Validation of a passive dynamic walker model for human gait analysis. In: Proceedings of IEEE engineering in medicine and biology society, Osaka, pp 6945–6948

    Google Scholar 

  129. Gregg R, Dhaher Y, Degani A, Lynch K (2012) On the mechanics of functional asymmetry in bipedal walking. IEEE Trans Biomed Eng 59:1310–1318

    PubMed  Google Scholar 

  130. Bogataj U, Gros N, Kljaji M, Malezic M (1995) The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functinal electrical stimulation therapy. Phys Ther 75:490–502

    CAS  PubMed  Google Scholar 

  131. Stanic U, Acimovi-Janezic R, Gros N, Trnkoczy A, Bajd T, Kljaji M (1978) Multichannel electrical stimulation for correction of hemiplegic gait. Methodology and preliminary results. Scand J Rehabil Med 10:75–92

    CAS  PubMed  Google Scholar 

  132. Bogataj U, Gros N, Malezic M, Kelih B, Kljaji M, Acimovi R (1989) Restoration of gait during two to three weeks of therapy with multichannel electrical stimulation. Phys Ther 69:319–327

    CAS  PubMed  Google Scholar 

  133. Ng MF, Tong RK, Li LS (2008) A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Stroke 39:154–160

    PubMed  Google Scholar 

  134. Pollock GBA, Pomeroy V, Langhorne P (2007) Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst Rev 24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle B. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reed, K.B., Handžić, I., McAmis, S. (2014). Home-Based Rehabilitation: Enabling Frequent and Effective Training. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_14

Download citation

Publish with us

Policies and ethics