Skip to main content

A Human Augmentation Approach to Gait Restoration

  • Chapter
  • First Online:
Neuro-Robotics

Abstract

Impaired gait can be restored to its physiological level using wearable robotic systems acting alongside human lower limbs and providing assistive forces that adapt to the residual sensory-motor capabilities of the wearer. Such systems can be used as assistive aids (to overcome disabilities or age-related impairments) or as rehabilitation tools (to restore physical and neurological abilities through proper training). In order to elicit physiological gait as a behavior emerging from the interaction between the robot and the user, the robot morphology must be considered as an open design variable, thus relaxing the constraint of using basically anthropomorphic architectures. This chapter deals with several design aspects related to this approach for the development of lower limbs wearable robots. In particular, it analyzes kinematic compatibility issues, possible topological connections among robotic elements, morphological optimization of robot properties, actuation solutions with series compliance, interaction control schemes and user’s intention detection strategies. Pilot tests on a novel non-anthropomorphic device, developed according to the proposed approach, are presented as a case-study, exemplifying the main design aspects described within the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GA parameters: Population Size: 40, Max Generations: 100, Scattered Crossover with Fraction: 0.8, Elite count: 2, Migration Fraction: 0.4, Migration Interval: 5, Stall Generations Limit: 15, Function Tolerance: 10−5.

  2. 2.

    The “active-set” algorithm was used. Maximum number of iterations: 100, Parameters Termination Tolerance: 10−9.

References

  1. Pons JL (2008) Wearable robots: biomechatronic exoskeletons. Wiley, Chichester

    Book  Google Scholar 

  2. Yagn N (1890) Apparatus for facilitating walking, running and jumping. US Patent 420179

    Google Scholar 

  3. Dollar AM, Herr H (2007) Active orthoses for the lower-limbs: challenges and state of the art. Transport 1:968–977

    Google Scholar 

  4. Kubow T, Full RJ (1999) The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil Trans R Soc Part B 354:849–861

    Article  Google Scholar 

  5. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093. doi:10.1126/science.1145803

    Article  CAS  PubMed  Google Scholar 

  6. Brown IE, Loeb GE (2000) Biomechanics and neuro-control of posture and movement. Springer, New York

    Google Scholar 

  7. Full RJ, Tu MS (1990) Mechanics of six-legged runners. J Exper Biol 148:129–146

    CAS  Google Scholar 

  8. Cham JG, Bailey SA, Cutkosky MR (2000) Robust dynamic locomotion through feedforward-preflex interaction. In: ASME International Mechanical Engineering Congress & Exposition (IMECE 2000), Orlando, Florida, November 5–10, pp 5–10

    Google Scholar 

  9. Collins S, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robots with two legs and knees. Int J Robot Res 20:607–615

    Article  Google Scholar 

  10. Mcgeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–81

    Article  Google Scholar 

  11. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–1085. doi:10.1126/science.1107799

    Article  CAS  PubMed  Google Scholar 

  12. Matsushita K, Yokoi H, Arai T (2006) Pseudo-passive dynamic walkers designed by coupled evolution of the controller and morphology. Robot Autonomous Syst 54:674–685. doi:10.1016/j.robot.2006.02.016

    Article  Google Scholar 

  13. Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res. doi:10.1177/0278364906065505

    Google Scholar 

  14. Zoss A, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatronics 11:128–138

    Article  Google Scholar 

  15. Jacobsen SC (2007) On the development of XOS, a powerful exoskeletal robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29–November 2, San Diego, USA

    Google Scholar 

  16. Vukobratovic M, Borovac B (2004) Zero-moment point – thirty five years of its life. Int J Human Robots 1:157–173

    Article  Google Scholar 

  17. Vukobratovic M, Juricic D (1969) Contribution to the synthesis of biped gait. IEEE Trans Biomed Eng 16:1–6. doi:10.1109/TBME.1969.4502596

    Article  CAS  PubMed  Google Scholar 

  18. Kawamoto H, Lee S, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMG-based feedback controller. In: IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10–12, 2005. ISBN 0-7803-9298-1, vol 2, pp 1648–1653

    Google Scholar 

  19. Suzuki K, Kawamura Y, Hayashi T et al (2006) Intention-based walking support for paraplegia patient. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10–12, 2005. ISBN 0-7803-9298-1, vol 3, pp 2707–2713

    Google Scholar 

  20. Farris R, Quintero H, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: IEEE transactions on neural systems and rehabilitation engineering, p 1, doi: 10.1109/TNSRE.2011.2163083

  21. Veneman J, Kruidhof R, Hekman E et al (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386. doi:10.1109/TNSRE.2007.903919

    Article  PubMed  Google Scholar 

  22. Fisher S, Lucas L, Thrasher TA (2011) Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil 18:269–276. doi:10.1310/tsr1803-269

    Article  PubMed  Google Scholar 

  23. Aoyagi D, Ichinose WE, Harkema SJ et al (2007) A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 15:387–400. doi:10.1109/TNSRE.2007.903922

    Article  PubMed  Google Scholar 

  24. Krut S, Benoit M, Dombre E, Pierrot F (2010) MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer. In: 2010 IEEE international conference on robotics and automation (ICRA), Anchorage, Alaska, May 3–8, pp 2215–2220

    Google Scholar 

  25. Mokhtarian A, Fattah A, Agrawal SK (2010) A novel passive pelvic device for assistance during locomotion. In: 2010 IEEE international conference on robotics and automation (ICRA), Anchorage, Alaska, May 3–8, pp 2241–2246

    Google Scholar 

  26. Vallery H, Duschau-Wicke A, Riener R (2010) Hiding robot inertia using resonance. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC), August 31–September 4, 2010, Buenos Aires, Argentina, pp 1271–1274

    Google Scholar 

  27. Bosecker CJ, Krebs HI (2009) MIT-Skywalker. In: 2009 IEEE international conference on rehabilitation robotics, ICORR 2009, 23–26 June 2009, Kyoto, Japan, pp 542–549

    Google Scholar 

  28. Cherry MS, Kota S, Ferris DP (2009) An elastic exoskeleton for assisting human running. In: Proceedings of the ASME 2009 international design engineering technical conferences & computers and information in engineering conference, IDETC/CIE 2009, August 30, San Diego, USA, pp 1–12

    Google Scholar 

  29. Beyl P, Knaepen K, Duerinck S et al (2011) Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Adv Robot 25:513–535

    Article  Google Scholar 

  30. Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978

    Google Scholar 

  31. Sims K (1994) Evolving virtual creatures. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, New York, pp 15–22

    Google Scholar 

  32. Dobrjanskyj L, Freudenstein F (1967) Some applications of graph theory to structural analysis of mechanisms. J Eng Ind-Trans ASME Ser B 89:153–158

    Article  Google Scholar 

  33. Mruthyunjaya TS (2003) Kinematic structure of mechanisms revisited. Mech Mach Theory 38(4):279–320

    Article  Google Scholar 

  34. Winter DA (1999) Biomechanics and motor control of human gait: normal, elderly and pathological, 2nd edn. University of Waterloo Press, Waterloo

    Google Scholar 

  35. Kutzbach K (1929) Mechanische Leitungsverzweigung. Maschinenbau, der Betrieb

    Google Scholar 

  36. Ding H, Huang Z (2007) A unique representation of the kinematic chain and the atlas database. Mech Mach Theory 42(6):637–651

    Article  Google Scholar 

  37. Sergi F et al (2010) A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots. In: 2010 IEEE conference on Robotics Automation and Mechatronics (RAM), pp 100–105

    Google Scholar 

  38. Sunkari RP (2006) Structural synthesis and analysis of planar and spatial mechanisms satisfying Gruebler's degrees of freedom equation. Department of Mechanical Engineering, University of Maryland, College Park

    Google Scholar 

  39. van den Kieboom J, Sergi F, Accoto D, Guglielmelli E, Ronsse R, Ijspeert AJ (2011) Co-evolution of morphology and control of a wearable robot for human locomotion assistance exploiting variable impedance actuators. Procedia Comput Sci 7:223–225

    Article  Google Scholar 

  40. Sergi F, Accoto D, Carpino G et al (2012) Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking. In: 2012 4th IEEE RAS EMBS international conference on biomedical robotics and biomechatronics (BioRob), 24–27 June, Rome, Italy, pp 1931–1936

    Google Scholar 

  41. Hurst J, Rizzi A (2004) Physically variable compliance in running. CLAWAR, Springer-Verlag, www.springeronline.com

  42. Raibert MH, Tello ER (1986) Legged robots that balance. IEEE Expert 1:89. doi:10.1109/MEX.1986.4307016

    Article  Google Scholar 

  43. Raibert MH (1984) Hopping in legged systems – modeling and simulation for the 2D one-legged case. IEEE Trans Syst Man Cybernetics 14:451–463

    Article  Google Scholar 

  44. Pratt G, Williamson M (1995) Series elastic actuators. Proc IEEE/RSJ IROS 1:399–406

    Google Scholar 

  45. Pratt GA, Willisson P, Bolton C, Hofman A (2004) Late motor processing in low-impedance robots: impedance control of series elastic actuators. In: American control conference, Boston, pp 3245–3251, 30 June–2 July 2004

    Google Scholar 

  46. Kong K, Bae J, Tomizuka M (2011) A compact rotary series elastic actuator for human assistive systems. In: IEEE/ASME transactions on mechatronics, pp 1–10, ISSN: 1083-4435, doi: 10.1109/TMECH.2010.2100046

  47. Lagoda C, Schouten A, Stienen A et al (2010) Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: 2010 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), 26–29 September, Tokyo, Japan, pp 21–26, doi: 10.1109/BIOROB.2010.5626010

  48. Sensinger J, Weir R (2008) User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion. IEEE Trans Biomed Eng 55:1043–1055. doi:10.1109/TBME.2007.905385

    Article  PubMed  Google Scholar 

  49. Stienen A, Hekman E, Ter Braak H et al (2010) Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation. IEEE Trans Biomed Eng 57:728–735. doi:10.1109/TBME.2009.2018628

    Article  Google Scholar 

  50. Tsagarakis N, Laffranchi M, Vanderborght B, Caldwell D (2009) A compact soft actuator unit for small scale human friendly robots. In: 2009 IEEE international conference on robotics and automation, ICRA’09, 12–17 May, Kobe, Japan, pp 4356–4362, doi: 10.1109/ROBOT.2009.5152496

  51. Veneman J, Ekkelenkamp R, Kruidhof R et al (2005) Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training. In: 2005 9th international conference on rehabilitation robotics, ICORR 2005, June 28–July 1, Chicago, Illinois, pp 496–499, doi: 10.1109/ICORR.2005.1501150

  52. Wyeth G (2006) Control issues for velocity sourced series elastic actuators. In: Proceedings of Australasian conference on robotics and automation 2006, December 6–8, Auckland, New Zealand

    Google Scholar 

  53. Accoto D, Carpino G, Sergi F, Tagliamonte NL, Guglielmelli E (2013) Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis. Int J Adv Robot Syst 10:359

    Google Scholar 

  54. Veneman JF, Ekkelenkamp R, Kruidhof R et al (2006) A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Robot Res 25:261–281. doi:10.1177/0278364906063829

    Article  Google Scholar 

  55. Wyeth G (2008) Demonstrating the safety and performance of a velocity sourced series elastic actuator. In: Proceedings of the IEEE international conference on robotics and automation, 19–23 May, Pasadena, CA, USA, pp 3642–3647, doi: 10.1109/ROBOT.2008.4543769

  56. Yoon S, Kang S, Kim S et al (2003) Safe arm with MR-based passive compliant joints and visco-elastic covering for service robot applications. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), 27–31 October, Las Vegas, USA, vol 3, pp 2191–2196, doi: 10.1109/IROS.2003.1249196

  57. Carpino G, Accoto D, Sergi F et al (2012) A novel compact torsional spring for series elastic actuators for assistive wearable robots. J Mech Design 134:121002. doi:10.1115/1.4007695

    Article  Google Scholar 

  58. Robinson D (2000) Design and analysis of series elasticity in closed-loop actuator force control. PhD dissertation, Massachusetts Institute of Technology (MIT), Cambridge

    Google Scholar 

  59. Van Ham R, Sugar T, Vanderborght B et al (2009) Compliant actuator designs. IEEE Robot Automat Mag 16:81–94. doi:10.1109/MRA.2009.933629

    Article  Google Scholar 

  60. Tagliamonte NL, Sergi F, Accoto D et al (2012) Double actuation architectures for rendering variable impedance in compliant robots: a review. Mechatronics 22:1187–1203. doi:10.1016/j.mechatronics.2012.09.011

    Article  Google Scholar 

  61. Accoto D, Carpino G, Tagliamonte NLT, Sergi F et al (2012) pVEJ: a modular passive viscoelastic joint for assistive wearable robots. In: 2012 IEEE international conference on robotics and automation (ICRA), 14–18 May, St. Paul, Minnesota, USA, pp 3361–3366

    Google Scholar 

  62. Carpino G, Accoto D, Di Palo M et al (2011) Design of a rotary passive viscoelastic joint for wearable robots. In: 2011 IEEE international conference on rehabilitation robotics (ICORR), June 29–July 1, Zurich, Switzerland, pp 1–6

    Google Scholar 

  63. Siciliano B, Sciavicco L (2009) Robotics: modelling, planning and control. Springer-Verlag London

    Google Scholar 

  64. Whitney DE (1987) Historical perspective and state of the art in robot force control. Int J Rob Res 6:3–14. doi:10.1177/027836498700600101

    Article  Google Scholar 

  65. Salisbury JK (1980) Active stiffness control of a manipulator in Cartesian coordinates. In: 1980 19th IEEE conference on decision and control including the symposium on adaptive processes, 10–12 December, Albuquerque, NM, vol 19, pp 95–100, doi: 10.1109/CDC.1980.272026

  66. Hogan N (1985) Impedance control: an approach to manipulation: Parts I, II, and III. J Dyn Syst Measure Control 107:1–24

    Article  Google Scholar 

  67. Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. Trans ASME J Dyn Syst Meas Contr 102:126–133

    Article  Google Scholar 

  68. Adams RJ, Hannaford B (2002) Control law design for haptic interfaces to virtual reality. IEEE Trans Control Syst Technol 10:3–13. doi:10.1109/87.974333

    Article  Google Scholar 

  69. Colgate E, Hogan N (1989) An analysis of contact instability in terms of passive physical equivalents. In: Proceedings of the 1989 IEEE international conference on robotics and automation, 14–19 May, Scottsdale, AZ, USA, vol 1, pp 404–409

    Google Scholar 

  70. Eppinger S, Seering W (1987) Understanding bandwidth limitations in robot force control. In: Proceedings of the 1987 IEEE international conference on robotics and automation, 31 March–3 April, Raleigh, NC, USA, pp 904–909

    Google Scholar 

  71. Albu-Schaffer A, Ott C, Hirzinger G (2007) A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots. The International Journal of Robotics Research 26:23–39. doi:10.1177/0278364907073776

    Article  Google Scholar 

  72. Hogan N (1989) Controlling impedance at the man/machine interface. In: Proceedings of the 1989 IEEE international conference on robotics and automation, 14–19 May, Scottsdale, AZ, USA, vol 3, pp 1626–1631

    Google Scholar 

  73. Pratt G, Williamson M (1995) Series elastic actuators. Intelligent robots and systems 95. In: Proceedings of the 1995 IEEE/RSJ international conference on human robot interaction and cooperative robots, 5–9 August, Pittsburgh, Pennslyvania, USA, vol 1, 399–406, doi: 10.1109/IROS.1995.525827

  74. Pratt G, Willisson P, Bolton C, Hofman A (2004) Late motor processing in low-impedance robots: impedance control of series-elastic actuators. In: Proceedings of the 2004 American control conference, 30 June–2 July, Boston, MA, vol 4, pp 3245–3251, doi: 10.1109/ACC.2004.182786

  75. Kong K, Bae J, Tomizuka M (2009) Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications. IEEE/ASME Trans Mechatronics 14:105–118. doi:10.1109/TMECH.2008.2004561

    Article  Google Scholar 

  76. Grun M, Muller R, Konigorski U (2012) Model based control of series elastic actuators. In: 2012 4th IEEE RAS EMBS international conference on biomedical robotics and biomechatronics (BioRob), 24–27 June, Rome, Italy, pp 538–543

    Google Scholar 

  77. Vallery H, Ekkelenkamp R, Van der Kooij H, Buss M (2007) Passive and accurate torque control of series elastic actuators. In: Proceedings of IEEE IROS, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29–November 2, San Diego, USA, pp 3534–3538

    Google Scholar 

  78. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87. doi:10.1109/86.662623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Schaechter J (2004) Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress Neurobiol 73:61–72

    Article  Google Scholar 

  80. Gordon KE, Ferris DP (2007) Learning to walk with a robotic ankle exoskeleton. J Biomech 40:2636–2644. doi:10.1016/j.jbiomech.2006.12.006

    Article  PubMed  Google Scholar 

  81. Rossini PM, Micera S, Benvenuto A et al (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121:777–783. doi:10.1016/j.clinph.2010.01.001

    Article  PubMed  Google Scholar 

  82. Kiguchi K, Iwami K, Yasuda M et al (2003) An exoskeletal robot for human shoulder joint. IEEE/ASME Trans Mechatronics 8:125–135

    Article  Google Scholar 

  83. Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC (2012) Intention-based EMG control for powered exoskeletons. IEEE Trans Biomed Eng 59:2180–2190. doi:10.1109/TBME.2012.2198821

    Article  CAS  PubMed  Google Scholar 

  84. Rosen J, Brand M, Fuchs MB, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybernetics Part A Syst Hum 31:210–222. doi:10.1109/3468.925661

    Article  Google Scholar 

  85. Cavallaro EE, Rosen J, Perry JC, Burns S (2006) Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng 53:2387–2396. doi:10.1109/TBME.2006.880883

    Article  PubMed  Google Scholar 

  86. Kinnaird CR, Ferris DP (2009) Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng 17:31–37. doi:10.1109/TNSRE.2008.2008285

    Article  PubMed Central  PubMed  Google Scholar 

  87. Dietz V, Fouad K, Bastiaanse CM (2001) Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14:1906–1914. doi:10.1046/j.0953-816x.2001.01813.x

    Article  CAS  PubMed  Google Scholar 

  88. Rueterbories J, Spaich EG, Larsen B, Andersen OK (2010) Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys 32:545–552. doi:10.1016/j.medengphy.2010.03.007

    Article  PubMed  Google Scholar 

  89. Novak D, Reberšek P, De Rossi SMM, Donati M, Podobnik J, Beravs T, Lenzi T, Vitiello N, Carrozza MC, Munih M (2013) Automated detection of gait initiation and termination using wearable sensors. Med Eng Phys 35(12):1713–1720. doi:10.1016/j.medengphy.2013.07.003

    Article  PubMed  Google Scholar 

  90. Ronsse R, Vitiello N, Lenzi T et al (2011) Human-robot synchrony: flexible assistance using adaptive oscillators. IEEE Trans Biomed Eng 58:1001–1012. doi:10.1109/TBME.2010.2089629

    Article  PubMed  Google Scholar 

  91. Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic Hebbian learning in adaptive frequency oscillators. Physica D Nonlinear Phenom 216:269–281. doi:10.1016/j.physd.2006.02.009

    Article  CAS  Google Scholar 

  92. Righetti L, Buchli J, Ijspeert AJ (2009) Adaptive frequency oscillators and applications. Open Cybernetics Syst J 3:64–69. doi:10.2174/1874110X00903020064

    Article  Google Scholar 

  93. Ronsse R, Lenzi T, Vitiello N et al (2011) Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 49:1173–1185. doi:10.1007/s11517-011-0816-1

    Article  PubMed  Google Scholar 

  94. Tagliamonte NL, Sergi F, Carpino G et al (2013) Human-robot interaction tests on a novel robot for gait assistance. In: IEEE International Conference on Rehabilitation Robotics (ICORR), 24–26 June 2013, Seattle, WA, pp. 1–6.

    Google Scholar 

  95. Vallery H, Veneman J, Van Asseldonk E et al (2008) Compliant actuation of rehabilitation robots: benefits and limitations of Series Elastic Actuators. IEEE Robot Automat Mag 15:60–69. doi:10.1109/MRA.2008.927689

    Article  Google Scholar 

  96. Pintelon R, Schoukens J (2001) System identification: a frequency domain approach. IEEE Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Accoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Accoto, D., Sergi, F., Tagliamonte, N.L., Carpino, G., Guglielmelli, E. (2014). A Human Augmentation Approach to Gait Restoration. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_13

Download citation

Publish with us

Policies and ethics