Skip to main content

A Learning Scheme for EMG Based Interfaces: On Task Specificity in Motion Decoding Domain

  • Chapter
  • First Online:
Neuro-Robotics

Abstract

A complete learning scheme for EMG based interfaces is used to discriminate between different reach to grasp movements in 3D space. The proposed scheme is able to decode human kinematics, using the myoelectric activity captured from human upper arm and forearm muscles. Three different task features can be distinguished: subspace to move towards, object to be grasped and task to be executed (with the grasped object). The discrimination between the different reach to grasp movements is accomplished with a random forest classifier. The classification decision triggers task-specific motion decoding models that outperform “general” models, providing better estimation accuracy. The proposed learning scheme takes advantage of both a classifier and a regressor, that cooperate advantageously in order to split the space, confronting with task specificity, the nonlinear relationship between the EMG signals and the motion to be estimated. The proposed scheme can be used for a series of EMG-based interfaces, ranging from EMG based teleoperation of robot arm hand systems to muscle computer interfaces and EMG controlled neuroprosthetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graupe D, Salahi J, Kohn KH (1982) Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J Biomed Eng 4(1):17–22

    Article  CAS  PubMed  Google Scholar 

  2. Artemiadis PK, Kyriakopoulos KJ (2010) EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans Robot 26(2):393–398

    Article  Google Scholar 

  3. Vogel J, Castellini C, van der Smagt PP (2011) EMG-based teleoperation and manipulation with the DLR LWR-III. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco, pp 672–678

    Google Scholar 

  4. Cipriani C, Zaccone F, Micera S, Carrozza MC (2008) On the shared control of an EMG-controlled prosthetic hand: analysis of user prosthesis interaction. IEEE Trans Robot 24(1):170–184

    Article  Google Scholar 

  5. Lucas L, DiCicco M, Matsuoka Y (2004) An EMG-controlled hand exoskeleton for natural pinching. J Robot Mech 16(5):482–488

    Google Scholar 

  6. Costanza E, Inverso SA, Allen R, Maes P (2007) Intimate interfaces in action: assessing the usability and subtlety of EMG-based motionless gestures. In: Proceedings of the SIGCHI conference on human factors in computing systems, ser. CHI ’07, San Jose. ACM, New York, pp 819–828

    Google Scholar 

  7. Saponas TS, Tan DS, Morris D, Balakrishnan R (2008) Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: Proceedings of the twenty-sixth annual SIGCHI conference on human factors in computing systems, ser. CHI ’08, Florence. ACM, New York, pp 515–524

    Google Scholar 

  8. Thakur PH, Bastian AJ, Hsiao SS (2008) Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J Neurosci 28(6):1271–1281

    Article  CAS  PubMed  Google Scholar 

  9. Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18(23):10105–10115

    CAS  PubMed  Google Scholar 

  10. Todorov E, Ghahramani Z (2004) Analysis of the synergies underlying complex hand manipulation. In: Proceedings of the 26th annual international conference of the IEEE engineering in medicine and biology society, EMBS ’04, San Francisco, Sept 2004, vol 2, pp 4637–4640

    Google Scholar 

  11. Mason CR, Gomez JE, Ebner TJ (2001) Hand synergies during reach-to-grasp. AIP J Neurophys 86(6):2896–2910

    CAS  Google Scholar 

  12. Klein Breteler MD, Simura KJ, Flanders M (2007) Timing of muscle activation in a hand movement sequence. Oxf J Cereb Cortex 17:803–815

    Article  Google Scholar 

  13. Ajiboye AB, Weir RF (2009) Muscle synergies as a predictive framework for the EMG patterns of new hand postures. J Neural Eng 6(3):036004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zajac FE (1986) Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. In: Bourne JR (ed) CRC critical reviews in biomedical engineering, vol 19, no 2. CRC, Boca Raton, pp 210–222

    Google Scholar 

  15. Fukuda O, Tsuji T, Kaneko M, Otsuka A (2003) A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans Robot Autom 19(2):210–222

    Article  Google Scholar 

  16. Maier S, van der Smagt P (2008) Surface EMG suffices to classify the motion of each finger independently. In: Proceedings of the international conference on motion and vibration control (MOVIC), Munich

    Google Scholar 

  17. Bitzer S, van der Smagt P (2006) Learning EMG control of a robotic hand: towards active prostheses. In: Proceedings 2006 IEEE international conference on robotics and automation (ICRA), Orlando, May 2006, pp 2819–2823

    Google Scholar 

  18. Zhao J, Xie Z, Jiang L, Cai H, Liu H, Hirzinger G (2005) Levenberg-marquardt based neural network control for a five-fingered prosthetic hand. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA, Barcelona, Apr 2005, pp 4482–4487

    Google Scholar 

  19. Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30(4–6):459–485

    Article  CAS  PubMed  Google Scholar 

  20. Nishikawa D, Yu W, Yokoi H, Kakazu Y (1999) EMG prosthetic hand controller using real-time learning method. In: IEEE SMC ’99 conference proceedings: 1999 IEEE international conference on systems, man, and cybernetics, Tokyo, vol 1, pp 153–158

    Google Scholar 

  21. Takahashi K, Nakauke T, Hashimoto M (2007) Remarks on hands-free manipulation using bio-potential signals. In: IEEE international conference on systems, man and cybernetics, Montreal, Oct 2007, pp 2965–2970

    Google Scholar 

  22. Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control of mechanical hands. J Neuroeng Rehabil 6:1–11

    Article  Google Scholar 

  23. Brochier T, Spinks RL, Umilta MA, Lemon RN (2004) Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J Neurophysiol 92(3):1770–1782

    Article  CAS  PubMed  Google Scholar 

  24. Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B 126(843):136–195

    Article  Google Scholar 

  25. Cavallaro E, Rosen J, Perry J, Burns S, Hannaford B (2005) Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm – parameters optimization. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA, Barcelona, Apr 2005, pp 4525–4530

    Google Scholar 

  26. Artemiadis P, Kyriakopoulos K (2005) Teleoperation of a robot manipulator using EMG signals and a position tracker. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Edmonton, Aug 2005, pp 1003–1008

    Google Scholar 

  27. Potvin J, Norman R, McGill S (1996) Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur J Appl Physiol Occup Physiol 74:119–132

    Article  CAS  PubMed  Google Scholar 

  28. Lloyd DG, Besier TF (2003) An emg-driven musculosceletal model to estimate muscle forces and knee joint movements in vivo. J Biomech 36:765–776

    Article  PubMed  Google Scholar 

  29. Artemiadis P, Kyriakopoulos K (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Trans Syst Man Cybern B Cybern 41(1):53–63

    Article  PubMed  Google Scholar 

  30. Artemiadis P, Kyriakopoulos K (2007) EMG-based teleoperation of a robot arm using low-dimensional representation. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2007, San Diego, 29 Oct 2007–2 Nov 2007, pp 489–495

    Google Scholar 

  31. Smith RJ, Tenore F, Huberdeau D, Etienne-Cummings R, Thakor NV (2008) Continuous decoding of finger position from surface EMG signals for the control of powered prostheses. In: 30th annual international conference of the IEEE engineering in medicine and biology society, EMBS, Vancouver, Aug 2008, pp 197–200

    Google Scholar 

  32. Ryu W, Han B, Kim J (2008) Continuous position control of 1 dof manipulator using EMG signals. In: Third international conference on convergence and hybrid information technology, ICCIT ’08, Busan, vol 1, Nov 2008, pp 870–874

    Google Scholar 

  33. Koike Y, Kawato M (1995) Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model. Biol Cybern 73:291–300

    Article  CAS  PubMed  Google Scholar 

  34. Liarokapis MV, Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ, Manolakos ES (2012) Learning human reach-to-grasp strategies: towards EMG-based control of robotic arm-hand systems. In: IEEE international conference on robotics and automation (ICRA), St. Paul, May 2012, pp 2287–2292

    Google Scholar 

  35. Liarokapis MV, Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ (2012) Learning task-specific models for reach to grasp movements: towards EMG-based teleoperation of robotic arm-hand systems. In: 4th IEEE RAS EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, June 2012, pp 1287–1292

    Google Scholar 

  36. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ, Manolakos ES (2013) A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models. IEEE J Biomed Health Inform 17(5):915–921

    Article  Google Scholar 

  37. Fligge N, Urbanek H, van der Smagt P (2012) Relation between object properties and emg during reaching to grasp. J Electromyogr Kinesiol 23(2):402–410

    Article  PubMed  Google Scholar 

  38. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ (2013) Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces. In: IEEE international conference on rehabilitation robotics (ICORR), Seattle, June 2013, pp 1–6

    Google Scholar 

  39. Artemiadis PK, Katsiaris PT, Kyriakopoulos KJ (2010) A biomimetic approach to inverse kinematics for a redundant robot arm. Auton Robots 29(3–4):293–308

    Article  Google Scholar 

  40. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ (2012) Functional anthropomorphism for human to robot motion mapping. In: 21st IEEE international symposium on robot and human interactive communication (RO-MAN), Paris, Sept 2012, pp 31–36

    Google Scholar 

  41. Cram JR, Kasman GS, Holtz J (1998) Introduction to surface electromyography. Gaithersburg, Md., Aspen Publishers.

    Google Scholar 

  42. Dae Hyong K et al (2011) Epidermal electronics. Science 333:838–843

    Article  Google Scholar 

  43. Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  44. Ho TK (1995) Random decision forests. In: Proceedings of the third international conference on document analysis and recognition, Montréal, Aug 1995, vol 1, pp 278–282

    Google Scholar 

  45. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  46. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic/Elsevier Science, Amsterdam/London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minas Liarokapis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liarokapis, M., Kyriakopoulos, K.J., Artemiadis, P. (2014). A Learning Scheme for EMG Based Interfaces: On Task Specificity in Motion Decoding Domain. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_1

Download citation

Publish with us

Policies and ethics