Skip to main content

Abstract

In this chapter, design and implementation of biorthogonal wavelet transforms of periodic signals is described. For this purpose, perfect reconstruction (PR) p-filter banks are used. In particular, design of compactly supported wavelets, such as popular 5/3 and 9/7 wavelets is outlined. Adaptation of the concepts of polynomials restoration and of vanishing moments to the discrete periodic setting is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Smith, T.R. Barnwell, Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process. 34(3), 434–441 (1986)

    Article  Google Scholar 

  2. A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Vetterli, C. Herley, Wavelets and filter banks: Theory and design. IEEE Trans. Signal Process. 40(9), 2207–2232 (1992)

    Article  MATH  Google Scholar 

  4. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Article  Google Scholar 

  5. D.S. Taubman, M.W. Marcellin (eds.), JPEG2000: Image Compression Fundamentals, Standards, and Practice, The Springer International Series in Engineering and Computer Science, vol. 642 (Springer, Berlin, 2002)

    Google Scholar 

  6. G. Strang, G. Fix, A Fourier analysis of the finite element variational method, in Constructive Aspects of Functional Analysis, ed. by G. Geymonat (Springer, Berlin, 2011), pp. 793–840

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Z. Averbuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Averbuch, A.Z., Neittaanmaki, P., Zheludev, V.A. (2014). Biorthogonal Wavelet Transforms. In: Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8926-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8926-4_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8925-7

  • Online ISBN: 978-94-017-8926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics