Mercury in Fish, Crustaceans and Mollusks from Estuarine Areas in the Pacific Ocean and Gulf of Mexico Under Varying Human Impact

  • Jorge R. Ruelas-InzunzaEmail author
  • Ofelia Escobar-Sánchez
  • Federico Páez-Osuna
Part of the Estuaries of the World book series (EOTW)


Mercury (Hg) is the most dangerous trace element present in the edible parts of fishes and invertebrates. With the aim of having a general view on Hg occurrence in commercially exploited biota (fish and invertebrates) from selected estuarine systems of Mexico, we compiled information related to Hg levels in fish (elasmobranchs and teleosts), shrimps, clams, mussels and oysters from impacted estuarine areas and other coastal ecosystems in the Pacific Ocean and the Gulf of Mexico. Levels of Hg in the Asiatic clam Corbicula fluminea (a freshwater species) were relatively low (< 0.32 µg g−1) in comparison to individuals collected in moderate or severely impacted sites. In the case of marine mollusks ( Crassostrea corteziensis and Mytella strigata) Hg concentrations were comparable to those from low or moderately contaminated sites. In shrimps, Hg values were low (< 0.72 µg g−1) and consistently higher in hepatopancreas tissue than in muscle. Rays had lower Hg levels ( < 0.4 µg g−1 wet weight) than sharks (< 2.0 µg g−1 wet weight). Teleost fish have been studied more thoroughly than other groups; Hg levels in muscle tissue varied by two orders of magnitude (from 0.02 to 1.58 µg g−1 dry weight). Among studied organisms, fish are known as the main pathway of Hg entrance to humans. It is necessary to generate information of the rates of consumption of fish, especially of predator species. Considering legal limits of Hg and methyl Hg (1.0 and 0.5 µg g−1 wet weight, respectively) in edible portion of fish in Mexico, at present there is risk to the human population for the consumption of the scalloped hammerhead shark Sphyrna lewini.


Mercury Fish Mollusks Crustaceans Health risk 


  1. Acosta y Asociados (2001) Inventario preliminar de emisiones atmosféricas de mercurio en México. Acosta y Asociados, Agua PrietaGoogle Scholar
  2. Adams DH, McMichael RH Jr (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 97:372–379Google Scholar
  3. Adams DH, McMichael RH Jr, Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Marine Research Institute, St. PetersburgGoogle Scholar
  4. Aguilar CA, Montalvo C, Rodríguez L et al (2012) American oyster ( Crassostrea virginica) and sediments as a coastal zone pollution monitor by heavy metals. Int J Environ Sci Tech 9(4):579–586CrossRefGoogle Scholar
  5. Al-Saleh I, Al-Doush I (2002) Mercury content in shrimp and fish species from the Gulf coast of Saudi Arabia. Bull Environ Contam Toxicol 68:576–583CrossRefPubMedGoogle Scholar
  6. Apeti DA, Lauenstein GG, Evans DW (2012) Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA´s mussel watch program. Mar Pollut Bull 64(11):2399–2408CrossRefPubMedGoogle Scholar
  7. Bacci E (1989) Mercury in the Mediterranean. Mar Pollut Bull 20:59–63CrossRefGoogle Scholar
  8. Bodin N, N’Gom-Ká R, Ká S et al (2013) Assessment of trace metals contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere 90(2):150–157CrossRefPubMedGoogle Scholar
  9. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351CrossRefPubMedGoogle Scholar
  10. Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ritinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut 182:245–261CrossRefGoogle Scholar
  11. Chouvelon T, Warnau M, Churlaud C et al (2009) Hg concentrations and related risk assessment in coral reef crustaceans, Mollusks and fish from New Caledonia. Environ Pollut 157:331–340CrossRefPubMedGoogle Scholar
  12. Clark JR (1996) Coastal zone management handbook. CRC Marine Science Series, Boca RatonGoogle Scholar
  13. Clark KF, Foster CT, Damon PE (1982) Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. Geol Soc Am Bull 93:533–544CrossRefGoogle Scholar
  14. Cortés E (1999) Standardized diet composition and trophic levels of sharks. ICES J Mar Sci 56:707–715CrossRefGoogle Scholar
  15. Croudace IW, Cundy A (1995) Heavy metal and hydrocarbon pollution in recent sediments from Southampton water, southern England: a geochemical and isotopic study. Environ Sci Technol 29:1288–1296CrossRefPubMedGoogle Scholar
  16. Day JW Jr, Hall CAS, Kemp WM et al (1989) Estuarine Ecology. Wiley, USAGoogle Scholar
  17. de la Peña-Sobarzo P (2003) Focos rojos de mercurio en América del Norte. El Faro III(31):8–9Google Scholar
  18. Díaz-Jaramillo M, Muñoz C, Rudolph I et al (2013) Seasonal mercury concentrations and δ15N and δ13C values of benthic macroinvertebrates and sediments from a historically polluted estuary in south central Chile. Sci Total Environ 442:198–206CrossRefPubMedGoogle Scholar
  19. Dirección de Investigación y Fomento de la Cultura Regional (DIFOCUR) (1991) Minería y espacio económico de la región minera de El Rosario en el siglo XVIII. DIFOCUR, MexicoGoogle Scholar
  20. Elahi M, Esmaili-Sari A, Bahramifar N (2007) Total mercury levels in selected tissues of some marine crustaceans from Persian Gulf, Iran: variations related to length, weight and sex. Bull Environ Contam Toxicol 88:60–64CrossRefGoogle Scholar
  21. Faria M, López MA, Díez S et al (2010) Are native naiads more tolerant to pollution than exotic freshwater bivalve species? An hypothesis tested using physiological responses of three species transplanted to mercury contaminated sites in the Ebro River (NE, Spain). Chemosphere 81:1218–1226CrossRefPubMedGoogle Scholar
  22. Fernández-Caliani JC, Barba-Brioso C, González I et al (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (southwest Spain). Water Air Soil Pollut 200:211–226CrossRefGoogle Scholar
  23. Gunderson EL (1995) Dietary intakes of pesticides, selected elements, and other chemicals: FDA total diet study, June 1984-April 1986. J AOAC Int 78:910–921PubMedGoogle Scholar
  24. Gutiérrez-Galindo EA, Flores-Muñoz G, Aguilar-Flores A (1988) Mercury in freshwater fish and clams from the Cerro Prieto geothernal field of Baja California, Mexico. Bull Environ Contam Toxicol 41:201–207CrossRefPubMedGoogle Scholar
  25. Haedrich RL, Hall CAS (1976) Fishes and estuaries. Oceanus 19(5):55–63Google Scholar
  26. Hoffman DJ, Rattner BA, Burton GA, Cairns J (1995) Handbook of ecotoxicology. Lewis Publishers, USAGoogle Scholar
  27. Hueter RE, Fong WG, Henderson G et al (1995) Methylmercury concentration in shark muscle by species, size and distribution of sharks in Florida Coastal waters. Water Air Soil Pollut 80:893–899CrossRefGoogle Scholar
  28. Hunter D (1975) The diseases of occupations. Hodder and Stoughton, LondonGoogle Scholar
  29. Ip CCM, Li XD, Zhang G et al (2004) Over one hundred years of trace metal fluxes in the sediment of the Pearl River Estuary, South China. Environ Pollut 132:157–172CrossRefPubMedGoogle Scholar
  30. Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2008) Trace metals accumulation patterns in a mangrove lagoon ecosystem, Mazatlán Harbor, southeast Gulf of California. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:995–1005CrossRefPubMedGoogle Scholar
  31. Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2012) Mercury transfer in a subtropical coastal lagoon food web (SE Gulf of California) under two contrasting climatic conditions. Environ Toxicol 27(9):526–536CrossRefPubMedGoogle Scholar
  32. Jara-Marini ME, Tapia-Alcaraz JN, Dumer-Gutiérrez JA et al (2013) Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California). Environ Monit Assess 185:1071–1085CrossRefPubMedGoogle Scholar
  33. Joiris CR, Holsbeek L, Otchere FA (2000) Mercury in the Bivalves Crassostrea tulipa and Perna perna from Ghana. Mar Pollut Bull 40:457–460CrossRefGoogle Scholar
  34. Kennish MJ (ed) (2001) Practical handbook of marine science, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  35. Kehrig H, Costa M, Moreira I et al (2006) Total and methyl mercury in different species of mollusks from two estuaries in Rio de Janeiro State. J Braz Chem Soc 17:1409–1418CrossRefGoogle Scholar
  36. Li P, Feng X, Chan HM et al (2013) Mercury in the seafood and human exposure in coastal area of Guangdong province, South China. Environ Toxicol Chem 32:541–547CrossRefPubMedGoogle Scholar
  37. Lindeboom H (2002) The coastal zone: an ecosystem under pressure. In: Field GF, Hempel G, Sumerhayes CP (eds) Oceans 2020 Science, trends, and the challenge of sustainability. Island Press, Washington DC, pp 49–84Google Scholar
  38. Maanan M (2008) Heavy metal concentrations in marine Mollusks from the Moroccan coastal region. Environ Pollut 153:176–183CrossRefPubMedGoogle Scholar
  39. Manisseri MK, Menon MN (1995) Copper-induce damage to hepatopancreas of the penaeid shrimp Metapenaeus dobsoni an ultrastructural study. Dis Aquat Org 22:51–57CrossRefGoogle Scholar
  40. Marcovecchio JE, Moreno VJ, Pérez A (1986) Bio-magnification of total mercury in Bahia Blanca estuary shark. Mar Pollut Bull 17(6):276–278CrossRefGoogle Scholar
  41. Monteiro LR, Costa V, Furness RW et al (1996) Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar Ecol Prog Ser 141:21–25CrossRefGoogle Scholar
  42. Moreno VJ, Pérez A, Bastida RO et al (1984) Distribución de mercurio total en los tejidos de un delfín nariz de botella ( Tursiops gephyreus Lahille, 1908) de la provincia de Buenos Aires (Argentina). Rev Inv Des Pesq 4:93–102Google Scholar
  43. Morton B, Blackmore G (2001) South China Sea. Mar Pollut Bull 42(12):1236–1263CrossRefPubMedGoogle Scholar
  44. Nam DH, Adams DH, Reyier EA et al (2011) Mercury and selenium levels in lemon sharks ( Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assess 176:549–559CrossRefPubMedGoogle Scholar
  45. NAS (1980) The International Mussel Watch. National Academy of Sciences, Washington, DCGoogle Scholar
  46. Nelson JS (2006) Fishes of the world. Wiley, New YorkGoogle Scholar
  47. Neufeld DSG (2010) Mercury accumulation in caged Corbicula: rate of uptake and seasonal variation. Environ Monit Assess 168:385–396CrossRefPubMedGoogle Scholar
  48. NRC (2000) Toxicological Effects of Methylmercury. National Academy Press, Washington DCGoogle Scholar
  49. Olivares-Rieumont S, Lima L, Rivero S et al (2012) Mercury Levels in sediments and Mangrove Oysters, Crassostrea rizophorae, from the north coast of Villa Clara, Cuba. Bull Environ Contam Toxicol 88:589–593CrossRefPubMedGoogle Scholar
  50. Ortega LA, Heupel MR, Van Beynen P et al (2009) Movement patterns and water quality preferences of juvenile bull sharks ( Carcharhinus leucas) in a Florida estuary. Environ Biol Fishes 84:361–373CrossRefGoogle Scholar
  51. Ortíz-Lozano L, Granados-Barba A, Solís-Weiss V et al (2005) Environmental evaluation and development problems of the Mexican coastal zone. Ocean Coast Manag 48:161–176CrossRefGoogle Scholar
  52. Osuna-Martínez CC, Páez-Osuna F, Alonso-Rodríguez R (2010) Mercury in cultured oysters ( Crassostrea gigas Thunberg, 1793 and C. corteziensis Hertlein, 1951) from four coastal lagoons of the SE Gulf of California, Mexico. Bull Environ Contam Toxicol 85:339–343CrossRefPubMedGoogle Scholar
  53. Otchere FA, Joiris CR, Holsbeek L (2003) Mercury in the bivalves Anadara ( Senilia) senilis, Perna perna and Crassostrea tulipa from Ghana. Sci Total Environ 304:369–375CrossRefPubMedGoogle Scholar
  54. Páez-Osuna F (ed) (2007) La contaminación por nitrógeno y fósforo en Sinaloa: flujos, fuentes, efectos y opciones de manejo. UNAM, MexicoGoogle Scholar
  55. Páez-Osuna F, Bojórquez-Leyva H, Green-Ruiz C (1998) Total carbohydrates: organic carbon in lagoon sediments as an indicator of organic effluents from agriculture and sugar-cane industry. Environ Pollut 102:321–326CrossRefGoogle Scholar
  56. Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16CrossRefPubMedGoogle Scholar
  57. Parks JM, Johs A, Podar M et al (2013) The genetic basis for bacterial mercury methylation. Science 339(6125):1332–1335CrossRefPubMedGoogle Scholar
  58. Rahman SA, Wood AK, Sarmani S, Majid AA (1997) Determination of mercury and organic mercury contents in Malaysian seafood. J Radioanal Nucl Chem 217:53–56CrossRefGoogle Scholar
  59. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507CrossRefPubMedGoogle Scholar
  60. Rainbow PS, Phillips DJH (1993) Cosmopolitan biomonitors of trace metals. Mar Pollut Bull 26:593–601CrossRefGoogle Scholar
  61. Rasmussen RS, Nettleton J, Morrissey MT (2005) A Review of mercury in seafood: special focus on tuna. J Aquat Food Prod Technol 14(4):71–100CrossRefGoogle Scholar
  62. Reimer AA, Reimer RD (1975) Total mercury in some fish and shellfish along the Mexican coast. Bull Environ Contam Toxicol 14(1):105–111CrossRefPubMedGoogle Scholar
  63. Riisgard HG, Famme P (1986) Accumulation of inorganic and organic mercury in shrimp, Crangon crangon. Mar Pollut Bull 17:255–257CrossRefGoogle Scholar
  64. Rosales-Hoz L, Cundy AB, Bahena-Manjarrez JL (2003) Heavy metals in sediment cores from a tropical estuary affected by anthropogenic dicharges: Coatzacoalcos estuary, Mexico. Estuar Coast Shelf Sci 56:1–10CrossRefGoogle Scholar
  65. Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bull Environ Contam Toxicol 74:294–300CrossRefPubMedGoogle Scholar
  66. Ruelas-Inzunza J, García-Rosales SB, Páez-Osuna F (2004) Distribution of mercury in adult penaeid shrimps from Altata-Ensenada del Pabellón lagoon (SE Gulf of California). Chemosphere 57:1657–1661CrossRefPubMedGoogle Scholar
  67. Ruelas-Inzunza J, Meza-López G, Páez-Osuna F (2008) Mercury in fish that are of dietary importance from the coasts of Sinaloa (SE Gulf of California). J Food Compos Anal 21:211–218CrossRefGoogle Scholar
  68. Ruelas-Inzunza J, Páez-Osuna F, Zamora-Arellano N et al (2009) Mercury in biota and surficial sediments from Coatzacoalcos estuary, Gulf of Mexico: distribution and seasonal variation. Water Air Soil Pollut 197:165–174CrossRefGoogle Scholar
  69. Ruelas-Inzunza J, Hernández-Osuna J, Páez-Osuna F (2011a) Total and organic mercury in ten fish species for human consumption from the Mexican Pacific. Bull Environ Contam Toxicol 86:679–683CrossRefPubMedGoogle Scholar
  70. Ruelas-Inzunza J, Green-Ruiz C, Zavala-Nevárez M et al (2011b) Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte river basin associated to a mining area (NW Mexico). Sci Total Environ 409:3527–3536CrossRefPubMedGoogle Scholar
  71. Ruelas-Inzunza J, Frías-Espericueta MG, Páez-Osuna F (2013) Mercury in the atmospheric and coastal environments of Mexico. Rev Environ Contam Toxicol 226:65–99PubMedGoogle Scholar
  72. Saiz-Salinas JI, González-Oreja JA (2000) Stress in estuarine communities: lessons from the highly-impacted Bilbao estuary (Spain). J Aquat Ecosyst Stress Recovery 7:43–55CrossRefGoogle Scholar
  73. Simpfendorfer CA, Freitas GG, Wiley RR et al (2005) Distribution and habitat partitioning of immature bull sharks ( Carcharhinus leucas) in a Southwest Florida Estuary. Estuar 28:78–85CrossRefGoogle Scholar
  74. Storelli MM, Stuffler RG, Marcotrigiano GO (2002) Total and methylmercury residues in tuna-fish from the Mediterranean sea. Food Addit Contam 19:715–720CrossRefPubMedGoogle Scholar
  75. Tu NPC, Ha NN, Ikemoto T et al (2008) Regional variations in trace element concentrations in tissues of black tiger shrimp Penaeus monodon (Decapoda: Penaeidae) from South Vietnam. Mar Pollut Bull 57:858–866CrossRefPubMedGoogle Scholar
  76. Vaisman AG, Marins RV, Lacerda LD (2005) Characterization of the mangrove oyster, Crassostrea rhizophorae, as a biomonitor for mercury in tropical estuarine systems, Northeast Brazil. Bull Environ Contam Toxicol 74:582–588CrossRefPubMedGoogle Scholar
  77. Wang WX (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309CrossRefGoogle Scholar
  78. WGMF (1980) Report on mercury in fish and fish products. Working Group Mercury in Fish, Department of Primary Industry. Australian Government Publishing Service, CanberraGoogle Scholar
  79. Wheterbee B, Cortés E (2004) Food consumption and feeding habits. In: Carrier JF, Musik JA, Heithaus M (eds) Biology of sharks and their relatives. CRC Press, Boca RatonGoogle Scholar
  80. Wiener JG, Bodaly RA, Brown SS et al (2007) Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In: Harris R, Krabbenhoft DP, Mason R et al (eds) Ecosystem responses to mercury contamination indicators of change. CRC Press, Pensacola, pp 87–122CrossRefGoogle Scholar
  81. Zhou Q, Zhang J, Fu J et al (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jorge R. Ruelas-Inzunza
    • 1
    Email author
  • Ofelia Escobar-Sánchez
    • 1
  • Federico Páez-Osuna
    • 2
  1. 1.Laboratorio de Metales PesadosInstituto Tecnológico de MazatlánMazatlánMéxico
  2. 2.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMéxico

Personalised recommendations