Skip to main content

Are There Really “Epileptogenic” Mechanisms or Only Corruptions of “Normal” Plasticity?

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Abstract

Plasticity in the nervous system, whether for establishing connections and networks during development, repairing networks after injury, or modifying connections based on experience, relies primarily on highly coordinated patterns of neural activity. Rhythmic, synchronized bursting of neuronal ensembles is a fundamental component of the activity-dependent plasticity responsible for the wiring and rewiring of neural circuits in the CNS. It is therefore not surprising that the architecture of the CNS supports the generation of highly synchronized bursts of neuronal activity in non-pathological conditions, even though the activity resembles the ictal and interictal events that are the hallmark symptoms of epilepsy. To prevent such natural epileptiform events from becoming pathological, multiple layers of homeostatic control operate on cellular and network levels. Many data on plastic changes that occur in different brain structures during the processes by which the epileptogenic aggregate is constituted have been accumulated but their role in counteracting or promoting such processes is still controversial. In this chapter we will review experimental and clinical evidence on the role of neural plasticity in the development of epilepsy. We will address questions such as: is epilepsy a progressive disorder? What do we know about mechanism(s) accounting for progression? Have we reliable biomarkers of epilepsy-related plastic processes? Do seizure-associated plastic changes protect against injury and aid in recovery? As a necessary premise we will consider the value of seizure-like activity in the context of normal neural development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams R (1989) ECT for Parkinson’s disease. Am J Psychiatry 146:1391–1393

    CAS  PubMed  Google Scholar 

  2. Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–225

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Anastasía A, Wojnacki J, de Erausquin GA, Mascó DH (2011) Glial cell-line derived neurotrophic factor is essential for electroconvulsive shock-induced neuroprotection in an animal model of Parkinson’s disease. Neuroscience 195:100–111

    PubMed  Google Scholar 

  4. André V, Ferrandon A, Marescaux C, Nehlig A (2000) Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res 42:7–22

    PubMed  Google Scholar 

  5. Angelucci F, Aloe L, Jiménez-Vasquez P, Mathé AA (2002) Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in adult rat brain. J ECT 18:138–143

    PubMed  Google Scholar 

  6. Avanzini G, Capovilla G (eds) (2013) Epileptic encephalopathies: proceedings of the international Sicilian workshop. Epilepsia 54:1–50

    Google Scholar 

  7. Badawy RAB, Vogrin SJ, Lai A, Cook MJ (2013) Are patterns of cortical hyperexcitability altered in catamenial epilepsy? Ann Neurol 74:743–757

    PubMed  Google Scholar 

  8. Balldin J, Edén S, Granérus AK, Modigh K, Svanborg A, Wålinder J, Wallin L (1980) Electroconvulsive therapy in Parkinson’s syndrome with “on-off” phenomenon. J Neural Transm 47:11–21

    CAS  PubMed  Google Scholar 

  9. Beale MD, Kellner CH, Gurecki P, Pritchett JT (1997) ECT for the treatment of Huntington’s disease: a case study. Convuls Ther 13:108–112

    CAS  PubMed  Google Scholar 

  10. Bertram EH 3rd, Lothman EW (1993) Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat. Brain Res 603:25–31

    PubMed  Google Scholar 

  11. Bien CG, Urbach H, Schramm J, Soeder BM, Becker AJ, Voltz R, Vincent A, Elger CE (2007) Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 69:1236–1244

    CAS  PubMed  Google Scholar 

  12. Blümcke I, Becker AJ, Klein C, Scheiwe C, Lie AA, Beck H, Waha A, Friedl MG, Kuhn R, Emson P, Elger C, Wiestler OD (2000) Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 59:1–10

    PubMed  Google Scholar 

  13. Bolkvadze T, Pitkänen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812

    PubMed  Google Scholar 

  14. Bradley NS, Ryu YU, Lin J (2008) Fast locomotor burst generation in late stage embryonic motility. J Neurophysiol 99:1733–1742

    PubMed  Google Scholar 

  15. Briellmann RS, Wellard RM, Jackson GD (2005) Seizure-associated abnormalities in epilepsy: evidence from MR imaging. Epilepsia 46:760–766

    PubMed  Google Scholar 

  16. Browning RA, Nelson DK (1985) Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci 37:2205–2211

    CAS  PubMed  Google Scholar 

  17. Castro OW, Furtado MA, Tilelli CQ, Fernandes A, Pajolla GP, Garcia-Cairasco N (2011) Comparative neuroanatomical and temporal characterization of FluoroJade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in Wistar rats. Brain Res 1374:43–55

    CAS  PubMed  Google Scholar 

  18. Cavalheiro EA, Riche DA, Le Gal La Salle G (1982) Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53:581–589

    CAS  PubMed  Google Scholar 

  19. Cendes F (2004) Febrile seizures and mesial temporal sclerosis. Curr Opin Neurol 17:161–164

    PubMed  Google Scholar 

  20. Chiba S, Wada JA (1997) The effect of electrolytic lesioning of the midbrain prior to amygdala kindling in rats. Neurosci Lett 227:83–86

    CAS  PubMed  Google Scholar 

  21. Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF (1987) The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 23:953–968

    CAS  PubMed  Google Scholar 

  22. De Lanerolle NC, Lee TS, Spencer DD (2012) Histopathology of human epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford, New York, pp 387–404

    Google Scholar 

  23. Doidge N (2007) The brain that changes itself: stories of personal triumph from the frontiers of brain science. Viking, New York

    Google Scholar 

  24. Eadie MJ (2011) William Gowers’ interpretation of epileptogenic mechanisms: 1880–1906. Epilepsia 52:1045–1051

    PubMed  Google Scholar 

  25. Ebert U, Löscher W (1995) Differences in mossy fibre sprouting during conventional and rapid amygdala kindling of the rat. Neurosci Lett 190:199–202

    CAS  PubMed  Google Scholar 

  26. Edwards HE, Burnham WM, Mendonca A, Bowlby DA, MacLusky NJ (1999) Steroid hormones affect limbic afterdischarge thresholds and kindling rates in adult female rats. Brain Res 838:136–150

    CAS  PubMed  Google Scholar 

  27. Engel J Jr (1998) Etiology as a risk factor for medically refractory epilepsy: a case for early surgical intervention. Neurology 51:1243–1244

    PubMed  Google Scholar 

  28. Essig CF (1965) Repeated electroconvulsions resulting in elevation of pentylenetetrazole seizure threshold. Int J Neuropharmacol 4:201–204

    CAS  PubMed  Google Scholar 

  29. Essig CF, Flanary HG (1966) The importance of the convulsion in occurrence and rate of development of electroconvulsive threshold elevation. Exp Neurol 14:448–452

    CAS  PubMed  Google Scholar 

  30. Faber R, Trimble MR (1991) Electroconvulsive therapy in Parkinson’s disease and other movement disorders. Mov Disord 6:293–303

    CAS  PubMed  Google Scholar 

  31. Finocchi C, Ferrari M (2011) Female reproductive steroids and neuronal excitability. Neurol Sci 32(Suppl 1):S31–S35

    PubMed  Google Scholar 

  32. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    PubMed  Google Scholar 

  33. Follesa P, Gale K, Mocchetti I (1994) Regional and temporal pattern of expression of nerve growth factor and basic fibroblast growth factor mRNA in rat brain following electroconvulsive shock. Exp Neurol 127:37–44

    CAS  PubMed  Google Scholar 

  34. Fregni F, Simon DK, Wu A, Pascual-Leone A (2005) Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry 76:1614–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gale K (2004) Epilepsy and seizures: excitotoxicity or excitotrophicity? In: Ferrarese C, Beal MF (eds) Excitotoxicity in neurological diseases. Springer, Boston, pp 137–170

    Google Scholar 

  36. Goddard GV, Douglas RM (1975) Does the engram of kindling model the engram of normal long term memory? Can J Neurol Sci 2:385–394

    CAS  PubMed  Google Scholar 

  37. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    CAS  PubMed  Google Scholar 

  38. Gombos Z, Spiller A, Cottrell GA, Racine RJ, McIntyre Burnham W (1999) Mossy fiber sprouting induced by repeated electroconvulsive shock seizures. Brain Res 844:28–33

    CAS  PubMed  Google Scholar 

  39. Gould E, Woolley CS, McEwen BS (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37:367–375

    CAS  PubMed  Google Scholar 

  40. Guerrini R, Pellacani S (2012) Benign childhood focal epilepsies. Epilepsia 53(Suppl 4):9–18

    PubMed  Google Scholar 

  41. Gwinn RP, Kondratyev A, Gale K (2002) Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114:403–409

    CAS  PubMed  Google Scholar 

  42. Hamada K, Wada JA (1998) Amygdaloid kindling in brainstem bisected cats. Epilepsy Res 29:87–95

    CAS  PubMed  Google Scholar 

  43. Hamm RJ, Pike BR, Temple MD, O’Dell DM, Lyeth BG (1995) The effect of postinjury kindled seizures on cognitive performance of traumatically brain-injured rats. Exp Neurol 136:143–148

    CAS  PubMed  Google Scholar 

  44. Hauser WA, Lee JR (2002) Do seizures beget seizures? Prog Brain Res 135:215–219

    PubMed  Google Scholar 

  45. Hauser WA, Rich SS, Annegers JF, Anderson VE (1990) Seizure recurrence after a 1st unprovoked seizure: an extended follow-up. Neurology 40:1163–1170

    CAS  PubMed  Google Scholar 

  46. Haut SR, Veliškova J, Moshé SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3(10):608–617

    PubMed  Google Scholar 

  47. Hebb D (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  48. Heng K, Haney MM, Buckmaster PS (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535–1541

    CAS  PubMed  Google Scholar 

  49. Hernandez TD, Holling LC (1994) Disruption of behavioral recovery by the anti-convulsant phenobarbital. Brain Res 635:300–306

    CAS  PubMed  Google Scholar 

  50. Hernandez TD, Schallert T (1988) Seizures and recovery from experimental brain damage. Exp Neurol 102:318–324

    CAS  PubMed  Google Scholar 

  51. Hirayasu Y, Wada JA (1993) The effect of brainstem bisection prior to the amygdala kindling in rats. Brain Res 610:354–357

    CAS  PubMed  Google Scholar 

  52. Huberman AD, Speer CM, Chapman B (2006) Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1. Neuron 52:247–254

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD (1999) Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 57:421–450

    CAS  PubMed  Google Scholar 

  54. Jaseja H (2004) Purpose of REM sleep: endogenous anti-epileptogenesis in man – a hypothesis. Med Hypotheses 62:546–548

    PubMed  Google Scholar 

  55. Jefferys JG (1992) Mechanism of tetanus toxin in neuronal cell death. Trends Pharmacol Sci 13:13–14

    CAS  PubMed  Google Scholar 

  56. Jefferys JG, Evans BJ, Hughes SA, Williams SF (1992) Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol 18:53–70

    CAS  PubMed  Google Scholar 

  57. Jones TA, Jones SM, Paggett KC (2001) Primordial rhythmic bursting in embryonic cochlear ganglion cells. J Neurosci Off J Soc Neurosci 21:8129–8135

    CAS  Google Scholar 

  58. Jones TA, Leake PA, Snyder RL, Stakhovskaya O, Bonham B (2007) Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J Neurophysiol 98:1898–1908

    PubMed Central  PubMed  Google Scholar 

  59. Kaiboriboon K, Hogan RE (2002) Hippocampal shape analysis in status epilepticus associated with acute encephalitis. AJNR Am J Neuroradiol 23:1003–1006

    PubMed  Google Scholar 

  60. Kant R, Bogyi AM, Carosella NW, Fishman E, Kane V, Coffey CE (1995) ECT as a therapeutic option in severe brain injury. Convuls Ther 11:45–50

    CAS  PubMed  Google Scholar 

  61. Kawakami M, Terasawa E, Ibuki T (1970) Changes in multiple unit activity of the brain during the estrous cycle. Neuroendocrinology 6:30–48

    CAS  PubMed  Google Scholar 

  62. Kellner CH, Beale MD, Pritchett JT, Bernstein HJ, Burns CM (1994) Electroconvulsive therapy and Parkinson’s disease: the case for further study. Psychopharmacol Bull 30:495–500

    CAS  PubMed  Google Scholar 

  63. Kelly ME, McIntyre DC (1994) Hippocampal kindling protects several structures from the neuronal damage resulting from kainic acid-induced status epilepticus. Brain Res 634:245–256

    CAS  PubMed  Google Scholar 

  64. Kho LK, Lawn ND, Dunne JW, Linto J (2006) First seizure presentation: do multiple seizures within 24 hours predict recurrence? Neurology 67:1047–1049

    PubMed  Google Scholar 

  65. Klapstein GJ, Meldrum BS, Mody I (1999) Decreased sensitivity to Group III mGluR agonists in the lateral perforant path following kindling. Neuropharmacology 38:927–933

    CAS  PubMed  Google Scholar 

  66. Kondratyev A, Sahibzada N, Gale K (2001) Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res Mol Brain Res 91:1–13

    CAS  PubMed  Google Scholar 

  67. Kondratyev A, Ved R, Gale K (2002) The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 114:411–416

    CAS  PubMed  Google Scholar 

  68. Kotloski R, Lynch M, Lauersdorf S, Sutula T (2002) Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog Brain Res 135:95–110

    PubMed  Google Scholar 

  69. Kragh J, Bruhn T, Woldbye DD, Bolwig TG (1993) Electroconvulsive shock (ECS) does not facilitate the development of kindling. Prog Neuropsychopharmacol Biol Psychiatry 17:985–989

    CAS  PubMed  Google Scholar 

  70. Kuljis RO, Rakic P (1990) Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proc Natl Acad Sci U S A 87:5303–5306

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Lewis DV, Barboriak DP, MacFall JR, Provenzale JM, Mitchell TV, VanLandingham KE (2002) Do prolonged febrile seizures produce medial temporal sclerosis? Hypotheses, MRI evidence and unanswered questions. Prog Brain Res 135:263–278

    PubMed  Google Scholar 

  72. Lewis DV, Shinnar S, Hesdorffer DC, Bagiella E, Bello JA, Chan S, Xu Y, Macfall J, Gomes WA, Moshé SL, Mathern GW, Pellock JM, Nordli DR Jr, Frank LM, Provenzale J, Shinnar RC, Epstein LG, Masur D, Litherland C, Sun S, FEBSTAT StudyTeam (2014) Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol 75(2):178–185

    Google Scholar 

  73. Li S, Reinprecht I, Fahnestock M, Racine RJ (2002) Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat. Neuroscience 115:1221–1229

    CAS  PubMed  Google Scholar 

  74. Liposits Z, Kalló I, Hrabovszky E, Gallyas F (1997) Ultrastructural pathology of degenerating “dark” granule cells in the hippocampal dentate gyrus of adrenalectomized rats. Acta Biol Hung 48:173–187

    CAS  PubMed  Google Scholar 

  75. Liu Z, D’Amore PA, Mikati M, Gatt A, Holmes GL (1993) Neuroprotective effect of chronic infusion of basic fibroblast growth factor on seizure-associated hippocampal damage. Brain Res 626:335–338

    CAS  PubMed  Google Scholar 

  76. Liu Z, Holmes GL (1997) Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits. Neuroscience 76:1129–1138

    CAS  PubMed  Google Scholar 

  77. Manji H (2003) Depression, III: treatments. Am J Psychiatry 160:24

    Google Scholar 

  78. Masco D, Sahibzada N, Switzer R, Gale K (1999) Electroshock seizures protect against apoptotic hippocampal cell death induced by adrenalectomy. Neuroscience 91:1315–1319

    CAS  PubMed  Google Scholar 

  79. Mathern GW, Adelson PD, Cahan LD, Leite JP (2002) Hippocampal neuron damage in human epilepsy: Meyer’s hypothesis revisited. Prog Brain Res 135:237–251

    PubMed  Google Scholar 

  80. Mathern GW, Babb TL, Leite JP, Pretorius K, Yeoman KM, Kuhlman PA (1996) The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res 26:151–161

    CAS  PubMed  Google Scholar 

  81. McIntyre DC, Kelly ME, Dufresne C (1999) FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res 35:197–209

    CAS  PubMed  Google Scholar 

  82. McIntyre DC, Poulter MO, Gilby K (2002) Kindling: some old and some new. Epilepsy Res 50:79–92

    CAS  PubMed  Google Scholar 

  83. McLaughlin T, Torborg CL, Feller MB, O’Leary DDM (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–1160

    CAS  PubMed  Google Scholar 

  84. Minea J (1909) Cercetari Experimentale asupra. Variatiunilor Morfogice ale Neuronului sensitiv. Thesis, Bucharest, Brozer (quoted by Marinesco G, La cellule nerveuse, 2 vol., Octave Doin et fils, Paris, 1909)

    Google Scholar 

  85. Mody I (1999) Synaptic plasticity in kindling. Adv Neurol 79:631–643

    CAS  PubMed  Google Scholar 

  86. Mohapel P, Armitage LL, Gilbert TH, Hannesson DK, Teskey GC, Corcoran ME (2000) Mossy fiber sprouting is dissociated from kindling of generalized seizures in the guinea-pig. Neuroreport 11:2897–2901

    CAS  PubMed  Google Scholar 

  87. Morrell F, deToledo-Morrell L (1999) From mirror focus to secondary epileptogenesis in man: an historical review. Adv Neurol 81:11–23

    CAS  PubMed  Google Scholar 

  88. Naylor P, Stewart CA, Wright SR, Pearson RC, Reid IC (1996) Repeated ECS induces GluR1 mRNA but not NMDAR1A-G mRNA in the rat hippocampus. Brain Res Mol Brain Res 35:349–353

    CAS  PubMed  Google Scholar 

  89. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci Off J Soc Neurosci 15:7539–7547

    CAS  Google Scholar 

  90. Nordli DR Jr (2012) Epileptic encephalopathies in infants and children. J Clin Neurophysiol 29:420–424

    PubMed  Google Scholar 

  91. Obiora O, McCormick LM, Karim Y, Gonzales P, Beeghly J (2012) Maintenance electroconvulsive therapy in a patient with multiple system atrophy and bipolar disorder. J ECT 28:e1–e2

    PubMed  Google Scholar 

  92. Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512

    CAS  PubMed  Google Scholar 

  93. Onat FY, Aker RG, Gurbanova AA, Ateş N, van Luijtelaar G (2007) The effect of generalized absence seizures on the progression of kindling in the rat. Epilepsia 48(Suppl 5):150–156

    PubMed  Google Scholar 

  94. Oppenheim RW (1975) The role of supraspinal input in embryonic motility: a re-examination in the chick. J Comp Neurol 160:37–50

    CAS  PubMed  Google Scholar 

  95. Osawa M, Uemura S, Kimura H, Sato M (2001) Amygdala kindling develops without mossy fiber sprouting and hippocampal neuronal degeneration in rats. Psychiatry Clin Neurosci 55:549–557

    CAS  PubMed  Google Scholar 

  96. Parrino L, Smerieri A, Spaggiari MC, Terzano MG (2000) Cyclic alternating pattern (CAP) and epilepsy during sleep: how a physiological rhythm modulates a pathological event. Clin Neurophysiol 111(Suppl 2):S39–S46

    PubMed  Google Scholar 

  97. Pekary AE, Meyerhoff JL, Sattin A (2000) Electroconvulsive seizures modulate levels of thyrotropin releasing hormone and related peptides in rat hypothalamus, cingulate and lateral cerebellum. Brain Res 884:174–183

    CAS  PubMed  Google Scholar 

  98. Penner MR, Pinaud R, Robertson HA (2001) Rapid kindling of the hippocampus protects against neural damage resulting from status epilepticus. Neuroreport 12:453–457

    CAS  PubMed  Google Scholar 

  99. Popeo D, Kellner CH (2009) ECT for Parkinson’s disease. Med Hypotheses 73:468–469

    PubMed  Google Scholar 

  100. Post RM, Putnam F, Contel NR, Goldman B (1984) Electroconvulsive seizures inhibit amygdala kindling: implications for mechanisms of action in affective illness. Epilepsia 25:234–239

    CAS  PubMed  Google Scholar 

  101. Provine RR (1993) Natural priorities for developmental study: neuroembryological perspectives of motor development. In: Kalverboer AF, Hopkins B, Geuze R (eds) Motor development in early and later childhood. Cambridge University Press, Cambridge, pp 51–73

    Google Scholar 

  102. Racine RJ, Adams B, Osehobo P, Fahnestock M (2002) Neural growth, neural damage and neurotrophins in the kindling model of epilepsy. Adv Exp Med Biol 497:149–170

    PubMed  Google Scholar 

  103. Ramos Lizana J, Cassinello Garciá E, Carrasco Marina LL, Vázquez López M, Martín González M, Muñoz Hoyos A (2000) Seizure recurrence after a first unprovoked seizure in childhood: a prospective study. Epilepsia 41:1005–1013

    CAS  PubMed  Google Scholar 

  104. Reti IM, Baraban JM (2000) Sustained increase in Narp protein expression following repeated electroconvulsive seizure. Neuropsychopharmacology 23:439–443

    CAS  PubMed  Google Scholar 

  105. Sacks J, Glaser N (1941) Changes in susceptibility to the convulsant action of metrazol. J Pharm 73:239–295

    Google Scholar 

  106. Sakhi S, Sun N, Wing LL, Mehta P, Schreiber SS (1996) Nuclear accumulation of p53 protein following kainic acid-induced seizures. Neuroreport 7:493–496

    CAS  PubMed  Google Scholar 

  107. Salmenperä T, Könönen M, Roberts N, Vanninen R, Pitkänen A, Kälviäinen R (2005) Hippocampal damage in newly diagnosed focal epilepsy: a prospective MRI study. Neurology 64:62–68

    PubMed  Google Scholar 

  108. Sandyk R (1986) ECT, opioid system, and motor response in Parkinson’s disease. Biol Psychiatry 21:235–236

    CAS  PubMed  Google Scholar 

  109. Sangdee P, Turkanis SA, Karler R (1982) Kindling-like effect induced by repeated corneal electroshock in mice. Epilepsia 23:471–479

    CAS  PubMed  Google Scholar 

  110. Sato K, Kashihara K, Morimoto K, Hayabara T (1996) Regional increases in brain-derived neurotrophic factor and nerve growth factor mRNAs during amygdaloid kindling, but not in acidic and basist growth factor mRNAs. Epilepsia 37:6–14

    CAS  PubMed  Google Scholar 

  111. Schallert T, Hernandez TD, Barth TM (1986) Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res 379:104–111

    CAS  PubMed  Google Scholar 

  112. Scharfman HE, MacLusky NJ (2006) The influence of gonadal hormones on neuronal excitability, seizures, and epilepsy in the female. Epilepsia 47:1423–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Scott RC, King MD, Gadian DG, Neville BGR, Connelly A (2003) Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain J Neurol 126:2551–2557

    Google Scholar 

  114. Shinnar S, Berg AT, Moshe SL, O’Dell C, Alemany M, Newstein D, Kang H, Goldensohn ES, Hauser WA (1996) The risk of seizure recurrence after a first unprovoked afebrile seizure in childhood: an extended follow-up. Pediatrics 98:216–225

    CAS  PubMed  Google Scholar 

  115. Shishido Y, Tanaka T, Piao Y, Araki K, Takei N, Higashiyama S, Nawa H (2006) Activity-dependent shedding of heparin-binding EGF-like growth factor in brain neurons. Biochem Biophys Res Commun 348:963–970

    CAS  PubMed  Google Scholar 

  116. Shouse MN (1988) Sleep deprivation increases thalamocortical excitability in the somatomotor pathway, especially during seizure-prone sleep or awakening states in feline seizure models. Exp Neurol 99:664–677

    CAS  PubMed  Google Scholar 

  117. Simonato M, Molteni R, Bregola G, Muzzolini A, Piffanelli M, Beani L, Racagni G, Riva M (1998) Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat. Eur J Neurosci 10:955–963

    CAS  PubMed  Google Scholar 

  118. Sloviter RS (2008) Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: the importance of the “latent period” and other concepts. Epilepsia 49(Suppl 9):85–92

    PubMed  Google Scholar 

  119. Sloviter RS, Dean E, Neubort S (1993) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol 330:337–351

    CAS  PubMed  Google Scholar 

  120. Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535–538

    CAS  PubMed  Google Scholar 

  121. Sokol DK, Demyer WE, Edwards-Brown M, Sanders S, Garg B (2003) From swelling to sclerosis: acute change in mesial hippocampus after prolonged febrile seizure. Seizure J Br Epilepsy Assoc 12:237–240

    Google Scholar 

  122. Stern MB (1991) Electroconvulsive therapy in untreated Parkinson’s disease. Mov Disord 6:265

    CAS  PubMed  Google Scholar 

  123. Stevens JR (1995) Clozapine: the Yin and Yang of seizures and psychosis. Biol Psychiatry 37:425–426

    CAS  PubMed  Google Scholar 

  124. Striano P, de Falco FA, Minetti C, Zara F (2009) Familial benign nonprogressive myoclonic epilepsies. Epilepsia 50(Suppl 5):37–40

    PubMed  Google Scholar 

  125. Sutula TP (2004) Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res 60:161–171

    PubMed  Google Scholar 

  126. Tongiorgi E, Armellin M, Giulianini PG, Bregola G, Zucchini S, Paradiso B, Steward O, Cattaneo A, Simonato M (2004) Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. J Neurosci Off J Soc Neurosci 24:6842–6852

    CAS  Google Scholar 

  127. Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA (2009) Retinal input instructs alignment of visual topographic maps. Cell 139:175–185

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171

    CAS  PubMed  Google Scholar 

  129. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    CAS  PubMed  Google Scholar 

  130. Tuunanen J, Pitkänen A (2000) Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res 39:171–176

    CAS  PubMed  Google Scholar 

  131. Uemura S, Kimura H, Kashiba A, Kumashiro H, Wada JA (1988) Bifunctional roles of catecholamines in the development of amygdala kindling demonstrated by continuous intra-amygdala infusion of 6-hydroxydopamine. Brain Res 448:162–166

    CAS  PubMed  Google Scholar 

  132. Wada JA, Hamada K (1999) Role of the midline brainstem in feline amygdaloid kindling. Epilepsia 40:669–676

    CAS  PubMed  Google Scholar 

  133. Wada JA, Mizoguchi T, Osawa T (1978) Secondarily generalized convulsive seizures induced by daily amygdaloid stimulation in rhesus monkeys. Neurology 28:1026–1036

    CAS  PubMed  Google Scholar 

  134. Wada JA, Osawa T (1976) Spontaneous recurrent seizure state induced by daily electric amygdaloid stimulation in Senegalese baboons (Papio papio). Neurology 26:273–286

    CAS  PubMed  Google Scholar 

  135. Wada JA, Sata M (1974) Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats. Correlative electrographic and behavioral features. Neurology 24:565–574

    CAS  PubMed  Google Scholar 

  136. Wirrell EC (1998) Benign epilepsy of childhood with centrotemporal spikes. Epilepsia 39(Suppl 4):S32–S41

    PubMed  Google Scholar 

  137. Wirrell EC (2003) Natural history of absence epilepsy in children. Can J Neurol Sci 30:184–188

    PubMed  Google Scholar 

  138. Wláz P, Potschka H, Löscher W (1998) Frontal versus transcorneal stimulation to induce maximal electroshock seizures or kindling in mice and rats. Epilepsy Res 30:219–229

    PubMed  Google Scholar 

  139. Zhang LX, Smith MA, Kim SY, Rosen JB, Weiss SR, Post RM (1996) Changes in cholecystokinin mRNA expression after amygdala kindled seizures: an in situ hybridization study. Brain Res Mol Brain Res 35:278–284

    CAS  PubMed  Google Scholar 

  140. Zhang X, Cui S-S, Wallace AE, Hannesson DK, Schmued LC, Saucier DM, Honer WG, Corcoran ME (2002) Relations between brain pathology and temporal lobe epilepsy. J Neurosci Off J Soc Neurosci 22:6052–6061

    CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to express their pleasure in contributing to this book published in honor of Phil Schwartzkroin, a good friend and great scientist. Since his earliest publications in the 1970s Phil’s work has been a point of reference for all people working in epileptology. Moreover, his expert and wise support of other people’s research as editor of Epilepsia will not be forgotten by the international epilepsy community. We look forward to benefiting for many years from his commitment to the development of our discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Avanzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Avanzini, G., Forcelli, P.A., Gale, K. (2014). Are There Really “Epileptogenic” Mechanisms or Only Corruptions of “Normal” Plasticity?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics