Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

The seizure focus is the site in the brain from which the seizure originated and is most likely equivalent to the epileptogenic zone, defined as the area of cerebral cortex indispensable for the generation of clinical seizures. The boundaries of this region cannot be defined at present by any diagnostic test. Imaging and EEG recording can define regions of functional deficit during the interictal period, regions that generate interictal spikes, regions responsible for the ictal symptoms, regions from which the seizure is triggered, and regions of structural damage. However, these regions define the epileptogenic zone only when they are spatially concordant. The frequent discrepancies suggest the essential involvement of synaptically connected regions, that is a distributive focus, in the origination of most seizures. Here we review supporting evidence from animal studies and studies of persons undergoing surgical resection for medically-intractable epilepsy. We conclude that very few of the common seizures are truly local, but rather depend on nodal interactions that permit spontaneous network excitability and behavioral expression. Recognition of the distributive focus underlying most seizures has motivated many surgical programs to upgrade their intracranial studies to capture activity in as much of the network as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avoli M, de Curtis M (2011) GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol 95:104–132

    Article  CAS  PubMed  Google Scholar 

  2. Avoli M, Gloor P (1982) Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy. Exp Neurol 76:196–217

    Article  CAS  PubMed  Google Scholar 

  3. Babb T, Brown W (1987) Pathological findings in epilepsy. In: Engel J (ed) Surgical treatment in epilepsy. Raven, New York, pp 511–540

    Google Scholar 

  4. Badawy RAB, Lai A, Vogrin SJ, Cook MJ (2013) Subcortical epilepsy? Neurology 80:1901–1907

    Article  PubMed  Google Scholar 

  5. Ben-Ari Y (2006) Seizures beget seizures: the quest for GABA as a key player. Crit Rev Neurobiol 18:135–144

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R (1981) Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6:1361–1391

    Article  CAS  PubMed  Google Scholar 

  7. Bertram EH (1997) The functional anatomy of spontaneous seizures in a rat model of chronic limbic epilepsy. Epilepsia 38:95–105

    Article  CAS  PubMed  Google Scholar 

  8. Bertram EH (2009) Temporal lobe epilepsy: where do the seizures really begin? Epilepsy Behav 14(Suppl 1):32–37

    Article  PubMed Central  PubMed  Google Scholar 

  9. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bouchet C, Cazauvieilh JB (1825) De l’épilepsie considéré dans ses rapports avec l’aliénation mentale. Arch Gen Med 9:510–542

    Google Scholar 

  11. Bragin A, Engel J, Wilson CL, Vizentin E, Mathern GW (1999) Electrophysiologic analysis of a chronic seizure model after unilateral hippocanpal KA injection. Epilepsia 40:1210–1221

    Article  CAS  PubMed  Google Scholar 

  12. Catterall WA (2012) Sodium channel mutations in epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. Oxford, New York, pp 675–687

    Chapter  Google Scholar 

  13. Chauvel P, Buser P, Badier JM, Liegois-Chauvel C, Marquis P, Bancaud J (1987) The “epileptogenic zone” in humans: representation of intercritical events by spatio-temporal maps. Rev Neurol (Paris) 143:443–450

    CAS  Google Scholar 

  14. Cooper EC (2012) Potassium channels (including KCNQ) and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. Oxford, New York, pp 55–65

    Chapter  Google Scholar 

  15. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438

    Article  PubMed  Google Scholar 

  16. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Article  CAS  PubMed  Google Scholar 

  17. Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH (2001) Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 3:657–669

    Article  Google Scholar 

  18. Hughlings Jackson J, Colman WS (1898) Case of epilepsy with tasting movements and ‘dreamy state’ – very small patch of softening in the left uncinate gyrus. Brain 21:580–590

    Article  Google Scholar 

  19. Huguenard JR (1999) Neuronal circuitry of thalamocortical epilepsy and mechanisms of antiabsence drug action. Adv Neurol 9:991–999

    Google Scholar 

  20. Jasper H, Pertuisset B, Flanigin H (1951) EEG and cortical electrograms in patients with temporal lobe seizures. Arch Neurol Psychiatr 65:272–290

    Article  CAS  Google Scholar 

  21. Maglóczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340

    Article  PubMed  Google Scholar 

  22. Margerison JH, Corsellis JAN (1966) Epilepsy and the temporal lobes. Brain 89:499–530

    Article  CAS  PubMed  Google Scholar 

  23. McNamara JO, Byrne MC, Dasheiff RM, Fitz JG (1980) The kindling model of epilepsy: a review. Prog Neurobiol 15:139–159

    Article  CAS  PubMed  Google Scholar 

  24. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495

    CAS  PubMed  Google Scholar 

  25. Nadler JV (1989) Seizures and neuronal cell death in epilepsy. In: Chan-Palay V, Köhler C (eds) The hippocampus – new vistas. Liss, New York, pp 463–481

    Google Scholar 

  26. Nadler JV (2009) Axon sprouting in epilepsy. In: Schwartzkroin PA (ed) Encyclopedia of epilepsy research, vol 3. Academic, Oxford, pp 1143–1148

    Chapter  Google Scholar 

  27. Nadler JV, Perry BW, Gentry C, Cotman CW (1980) Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid. J Comp Neurol 192:333–359

    Article  CAS  PubMed  Google Scholar 

  28. Natsume J, Bernasconi N, Andermann F, Bernasconi A (2003) MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology 60:1296–1300

    Article  PubMed  Google Scholar 

  29. Noam Y, Bernard C, Baram TZ (2011) Towards an integrated view of HCN channel role in epilepsy. Curr Opin Neurobiol 21:873–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Okazaki MM, Nadler JV (1988) Protective effects of mossy fiber lesions against kainic acid-induced seizures and neuronal degeneration. Neuroscience 26:763–781

    Article  CAS  PubMed  Google Scholar 

  31. Oliva M, Berkovic SF, Petrou S (2012) Sodium channels and the neurobiology of epilepsy. Epilepsia 53:1849–1859

    Article  CAS  PubMed  Google Scholar 

  32. Reid CA, Phillips AM, Petrou S (2012) HCN channelopathies: pathophysiology in genetic epilepsy and therapeutic implications. Br J Pharmacol 165:49–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  34. Sanabria ER, da Silva AV, Spreafico R, Cavalheiro EA (2002) Damage, reorganization, and abnormal cortical excitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia 43(Suppl 5):96–106

    Article  PubMed  Google Scholar 

  35. Sanabria ER, Su H, Yaari Y (2001) Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J Physiol 532:205–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sommer W (1880) Erkrankung des Ammon’s horn als aetiologis ches moment der epilepsien. Arch Psychiatr Nurs 10:631–675

    Article  Google Scholar 

  37. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227

    Article  PubMed  Google Scholar 

  38. Spenser SS, Spencer DD (1994) Entorhinal-hippocampal interaction in medial temporal epilepsy. Epilepsia 35:721–727

    Article  Google Scholar 

  39. Steinhäuser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60:1192–1202

    Article  PubMed  Google Scholar 

  40. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Tursky L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    Article  CAS  PubMed  Google Scholar 

  41. Vale FL, Pollock G, Benbadis SR (2012) Failed epilepsy surgery for mesial temporal lobe sclerosis: a review of the pathophysiology. Neurosurg Focus 32:(E9)1–6

    Google Scholar 

  42. van Diessen E, Diederen SJH, Braun KPJ, Jansen FE, Stam CJ (2013) Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 54:1855–1865

    Article  PubMed  Google Scholar 

  43. Wellmer J, Su H, Beck H, Yaari Y (2002) Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus. Eur J Neurosci 16:259–266

    Article  PubMed  Google Scholar 

  44. Wendling F, Chauvel P, Biraben A, Bartolomei F (2010) From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci 4:(A154)1–13

    Google Scholar 

  45. Westbrook GL, Lothman EW (1983) Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity. Brain Res 273:97–109

    Article  CAS  PubMed  Google Scholar 

  46. Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blümcke I (2000) Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol 59:907–920

    CAS  PubMed  Google Scholar 

  47. Zhang X, Cui S-S, Wallace AE, Hannesson DK, Schmued LC, Saucier DM, Honer WG, Corcoran ME (2002) Relations between brain pathology and temporal lobe epilepsy. J Neurosci 22:6052–6061

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge the unparalleled leadership provided by Phil Schwartzkroin in support of basic epilepsy research. His work on the relationship between seizures and synaptic inhibition strongly influenced the search for mechanisms of epileptogenesis in the animal models that emerged during the same period and the subsequent studies pursued in his laboratory taught us a great deal about both the normal and pathological functions of the hippocampus. We have profited enormously from Phil’s promotion of basic research through the American Epilepsy Society, including a term as president, his editorship of Epilepsia, his organizing numerous symposia, conferences, and books, and his exemplary training of outstanding young basic and translational neuroscientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Victor Nadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nadler, J.V., Spencer, D.D. (2014). What Is a Seizure Focus?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics