Skip to main content

What Is the Importance of Abnormal “Background” Activity in Seizure Generation?

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Abstract

Investigations of interictal epileptiform spikes and seizures have played a central role in the study of epilepsy. The background EEG activity, however, has received less attention. In this chapter we discuss the characteristic features of the background activity of the brain when individuals are at rest and awake (resting wake) and during sleep. The characteristic rhythms of the background EEG are presented, and the presence of 1/f β behavior of the EEG power spectral density is discussed and its possible origin and functional significance. The interictal EEG findings of focal epilepsy and the impact of interictal epileptiform spikes on cognition are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts JH, Binnie CD, Smit AM, Wilkins AJ (1984) Selective cognitive impairment during focal and generalized epileptiform EEG activity. Brain 107(Pt 1):293–308

    Google Scholar 

  2. Aladjalova NA (1957) Infra-slow rhythmic oscillation of the steady potential of the cerebral cortex. Nature 4567:957–959

    Article  Google Scholar 

  3. Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17

    Article  CAS  PubMed  Google Scholar 

  4. Bak P (1996) How nature works: the science of self-organized criticality. Nature 383(6603):772–773

    Google Scholar 

  5. Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20(18):7080–7086

    CAS  PubMed  Google Scholar 

  6. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32(2):423–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Berger H (1929) Über das elektrenkephalogramm des menschen. I Mitteilung. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  8. Berger H, Gloor P (1969) Hans berger on the electroencephalogram of man: the fourteen original reports on the human electroencephalogram. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  9. Bédard C, Kröger H, Destexhe A (2006) Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys Rev Lett 97(11):118102

    Article  PubMed  Google Scholar 

  10. Bédard C, Rodrigues S, Roy N, Contreras D, Destexhe A (2010) Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function. J Comput Neurosci 29(3):389–403

    Article  PubMed  Google Scholar 

  11. Blume WT, Borghesi JL, Lemieux JF (1993) Interictal indices of temporal seizure origin. Ann Neurol 34(5):703–709

    Article  CAS  PubMed  Google Scholar 

  12. Bragin A, Engel JJ Jr, Wilson CL, Fried I, Buzsaki G (1999) High-frequency oscillations in human brain. Hippocampus 9(2):137–142

    Article  CAS  PubMed  Google Scholar 

  13. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 hz) in human epileptic brain and in kainic acid–treated rats with chronic seizures. Epilepsia 40(2):127–137

    Article  CAS  PubMed  Google Scholar 

  14. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1 Pt 1):47–60

    CAS  PubMed  Google Scholar 

  15. Brazier MA (1960) The EEG, in epilepsy. A historical note. Epilepsia 1:328–336

    Article  CAS  PubMed  Google Scholar 

  16. Brazier MA (1961) A history of the electrical activity of the brain: the first half-century. Pitman Medical Publishing Co. Ltd, London

    Google Scholar 

  17. Buzsaki G (2009) Rhythms of the brain. Oxford University Press, London

    Google Scholar 

  18. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793):1626–1628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14(11):506–515

    Article  PubMed Central  PubMed  Google Scholar 

  20. Colder BW, Frysinger RC, Wilson CL, Harper RM, Engel J Jr (1996) ecreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 37(2):113–121

    Article  CAS  PubMed  Google Scholar 

  21. Colder BW, Wilson CL, Frysinger RC, Harper RM, Engel J Jr (1996) Interspike intervals during interictal periods in human temporal lobe epilepsy. Brain Res 719(1–2):96–103

    Article  CAS  PubMed  Google Scholar 

  22. Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G et al (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 12(6):563–571

    Article  PubMed  Google Scholar 

  23. de Weerd A, de Haas S, Otte A, Trenité DK, van Erp G, Cohen A et al (2004) Subjective sleep disturbance in patients with partial epilepsy: a questionnaire-based study on prevalence and impact on quality of life. Epilepsia 45(11):1397–1404

    Article  PubMed  Google Scholar 

  24. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126

    CAS  PubMed  Google Scholar 

  25. Eckhorn R (1994) Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Prog Brain Res 102:405–426

    Article  CAS  PubMed  Google Scholar 

  26. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188

    Article  CAS  PubMed  Google Scholar 

  27. Elger CE, Helmstaedter C, Kurthen M (2004) Chronic epilepsy and cognition. Lancet Neurol 3(11):663–672

    Article  PubMed  Google Scholar 

  28. Elger CE, Mormann F (2013) Seizure prediction and documentation-two important problems. Lancet Neurol 12(6):531–532

    Article  PubMed  Google Scholar 

  29. Engel J (2011) Biomarkers in epilepsy: introduction. Biomark Med 5(5):537–544

    Article  PubMed  Google Scholar 

  30. Fisher RS, Engel JJ (2010) Definition of the postictal state: when does it start and end? Epilepsy Behav 19(2):100–104

    Article  PubMed  Google Scholar 

  31. Freeman WJ, Holmes MD, Burke BC, Vanhatalo S (2003) Spatial spectra of scalp EEG and EMG from awake humans. Clin Neurophysiol 114(6):1053–1068

    Article  PubMed  Google Scholar 

  32. Gibbs FA, Gibbs EL (1941) Atlas of electroencephalography. Lew A. Cummings Co., Cambridge, MA

    Google Scholar 

  33. Gloor P, Ball G, Schaul N (1977) Brain lesions that produce delta waves in the EEG. Neurology 27(4):326–329

    Article  CAS  PubMed  Google Scholar 

  34. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Holmes GL, Lenck-Santini PP (2006) Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 8(3):504–515

    Article  PubMed  Google Scholar 

  36. Kanner AM (2011) Anxiety disorders in epilepsy: the forgotten psychiatric comorbidity. Epilepsy Curr 11(3):90–91

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kleen JK, Scott RC, Holmes GL, Lenck-Santini PP (2010) Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol 67(2):250–257

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kleen JK, Scott RC, Holmes GL, Roberts DW, Rundle MM, Testorf M et al (2013) Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81(1):18–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kleen JK et al (2012) Cognitive and behavioral co-morbidities of epilepsy. In: Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US)

    Google Scholar 

  40. Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3(9):946–953

    Article  CAS  PubMed  Google Scholar 

  41. Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408(6810):357–361

    Article  CAS  PubMed  Google Scholar 

  42. Lieb JP, Joseph JP, Engel J Jr, Walker J, Crandall PH (1980) Sleep state and seizure foci related to depth spike activity in patients with temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 49(5–6):538–557

    Article  CAS  PubMed  Google Scholar 

  43. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377

    CAS  PubMed  Google Scholar 

  44. Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron 55(5):809–823

    Article  CAS  PubMed  Google Scholar 

  45. Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–13620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Matsumoto JY, Stead M, Kucewicz MT, Matsumoto AJ, Peters PA, Brinkmann BH et al (2013) Network oscillations modulate interictal epileptiform spike rate during human memory. Brain 136(Pt 8):2444–2456

    Article  PubMed  Google Scholar 

  47. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(Pt 2):314–333

    Article  PubMed  Google Scholar 

  48. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenom 144(3):358–369

    Article  Google Scholar 

  49. Nabbout R, Dulac O (2003) Epileptic encephalopathies: a brief overview. J Clin Neurophysiol 20(6):393–397

    Article  PubMed  Google Scholar 

  50. Neidermeyer E, Da Silva FL (2005) Electroencephalography: basic principals, clinical applications, and related fields. Lippincott and Wilkins, Philadelphia

    Google Scholar 

  51. Nordli DR, Moshé SL, Shinnar S, Hesdorffer DC, Sogawa Y, Pellock JM et al (2012) Acute EEG findings in children with febrile status epilepticus results of the FEBSTAT study. Neurology 79(22):2180–2186

    Article  PubMed Central  PubMed  Google Scholar 

  52. Parish LM, Worrell GA, Cranstoun SD, Stead SM, Pennell P, Litt B (2004) Long-range temporal correlations in epileptogenic and non-epileptogenic human hippocampus. Neuroscience 125(4):1069–1076

    Article  CAS  PubMed  Google Scholar 

  53. Penfield J (1954) Epilepsy and the functional anatomy of the human brain. Little Brown, Boston

    Google Scholar 

  54. Piperidou C, Karlovasitou A, Triantafyllou N, Terzoudi A, Constantinidis T, Vadikolias K et al (2008) Influence of sleep disturbance on quality of life of patients with epilepsy. Seizure 17(7):588–594

    Article  PubMed  Google Scholar 

  55. Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 30(3):101–110

    Article  CAS  PubMed  Google Scholar 

  56. Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ravagnati L, Halgren E, Babb TL, Crandall PH (1979) Activity of human hippocampal formation and amygdala neurons during sleep. Sleep 2(2):161–173

    CAS  PubMed  Google Scholar 

  58. Reiher J, Beaudry M, Leduc CP (1989) Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci 16(4):398–401

    CAS  PubMed  Google Scholar 

  59. Sammaritano M, Gigli GL, Gotman J (1991) Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology 41(2 (Pt 1)):290–297

    Article  CAS  PubMed  Google Scholar 

  60. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027–1034

    Article  CAS  PubMed  Google Scholar 

  61. Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R et al (2007) Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 35(1):140–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Schindler K, Leung H, Elger CE, Lehnertz K (2007) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130(Pt 1):65–77

    PubMed  Google Scholar 

  63. Shewmon DA, Erwin RJ (1988) Focal spike-induced cerebral dysfunction is related to the after-coming slow wave. Ann Neurol 23(2):131–137

    Article  CAS  PubMed  Google Scholar 

  64. Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21(5):1123–1128

    Article  CAS  PubMed  Google Scholar 

  65. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J (2002) Quantitative analysis of high-frequency oscillations (80–500 hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 88(4):1743–1752

    PubMed  Google Scholar 

  66. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr (2002) Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J Neurosci 22(13):5694–5704

    CAS  PubMed  Google Scholar 

  67. Staba RJ, Wilson CL, Fried I, Engel J Jr (2002) Single neuron burst firing in the human hippocampus during sleep. Hippocampus 12(6):724–734

    Article  PubMed  Google Scholar 

  68. Tao JX, Chen XJ, Baldwin M, Yung I, Rose S, Frim D et al (2011) Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 52(3):467–476

    Article  PubMed  Google Scholar 

  69. Téllez-Zenteno JF, Dhar R, Hernandez-Ronquillo L, Wiebe S (2007) Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain 130(Pt 2):334–345

    Article  PubMed  Google Scholar 

  70. Thivierge JP, Cisek P (2008) Nonperiodic synchronization in heterogeneous networks of spiking neurons. J Neurosci 28(32):7968–7978

    Article  CAS  PubMed  Google Scholar 

  71. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10(12):1185–1199

    Article  CAS  PubMed  Google Scholar 

  72. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150

    Article  PubMed  Google Scholar 

  73. Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104(2):1195–1210

    Article  PubMed Central  PubMed  Google Scholar 

  74. Towle VL, Carder RK, Khorasani L, Lindberg D (1999) Electrocorticographic coherence patterns. J Clin Neurophysiol 16(6):528–547

    Article  CAS  PubMed  Google Scholar 

  75. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    Article  CAS  PubMed  Google Scholar 

  76. Walter G (1936) The location of cerebral tumors by electroencephalography. Lancet 2:305–308

    Article  Google Scholar 

  77. Warren CP, Hu S, Stead M, Brinkmann BH, Bower MR, Worrell GA (2010) Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol 104(6):3530–3539

    Article  PubMed Central  PubMed  Google Scholar 

  78. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126(Pt 6):1449–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64(2):281–289

    Article  CAS  PubMed  Google Scholar 

  80. Worrell GA, Cranstoun SD, Echauz J, Litt B (2002) Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 13(16):2017–2021

    Article  PubMed  Google Scholar 

  81. Zaveri HP, Pincus SM, Goncharova II, Duckrow RB, Spencer DD, Spencer SS (2009) Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area. Neuroreport 20(9):891–895

    Article  PubMed  Google Scholar 

  82. Zhou JL, Lenck-Santini PP, Zhao Q, Holmes GL (2007) Effect of interictal spikes on single-cell firing patterns in the hippocampus. Epilepsia 48(4):720–731

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are honored to have the opportunity to participate in this book celebrating Philip Schwartzkroin’s many contributions to epilepsy research.

Other Acknowledgements

This research was supported by NIH R01-NS071048 (RS) and NIH R01-NS63039 (GW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Worrell M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staba, R.J., Worrell, G.A. (2014). What Is the Importance of Abnormal “Background” Activity in Seizure Generation?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics