Skip to main content

What New Modeling Approaches Will Help Us Identify Promising Drug Treatments?

  • Chapter
  • First Online:
Book cover Issues in Clinical Epileptology: A View from the Bench

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

Despite the development of numerous novel antiepileptic drugs (AEDs) in recent years, several unmet clinical needs remain, including resistance to AEDs in about 30 % of patients with epilepsy, adverse effects of AEDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk. Animal models of seizures and epilepsy have been instrumental in the discovery and preclinical development of novel AEDs, but obviously the previously used models have failed to identify drugs that address unmet medical needs. Thus, we urgently need fresh ideas for improving preclinical AED development. In this review, a number of promising models will be described, including the use of simple vertebrates such as zebrafish (Danio rerio), large animal models such as the dog and newly characterized rodent models of pharmacoresistant epilepsy. While these strategies, like any animal model approach also have their limitations, they offer hope that new more effective AEDs will be identified in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afrikanova T, Serruys AS, Buenafe OE, Clinckers R, Smolders I, de Witte PA et al (2013) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8(1):e54166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F et al (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485(7399):471–477

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Ainsworth C (2011) Networking for new drugs. Nat Med 17(10):1166–1168

    Article  CAS  PubMed  Google Scholar 

  4. Bankstahl JP, Bankstahl M, Kuntner C, Stanek J, Wanek T, Meier M et al (2011) A novel positron emission tomography imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier. J Neurosci 31(24):8803–8811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768

    Article  CAS  PubMed  Google Scholar 

  6. Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR (2007) A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48(6):1151–1157

    Article  PubMed Central  PubMed  Google Scholar 

  7. Baraban SC (2013) Forebrain electrophysiological recording in larval zebrafish. J Vis Exp (71). pii: 50104

    Google Scholar 

  8. Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening and transcriptomic analysis in Scn1a zebrafish mutants identifies potential lead compound for Dravet Syndrome. Nat Commun 4:2410

    Article  PubMed Central  PubMed  Google Scholar 

  9. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–228

    Article  CAS  PubMed  Google Scholar 

  10. Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MR, Fox J, Parkin CA et al (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5(6):773–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75(1):18–28

    Article  CAS  PubMed  Google Scholar 

  12. Bialer M, White HS (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9(1):68–82

    Article  CAS  PubMed  Google Scholar 

  13. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2013) Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 103(1):2–30

    Article  PubMed  Google Scholar 

  14. Brandt C, Volk HA, Löscher W (2004) Striking differences in individual anticonvulsant response to phenobarbital in rats with spontaneous seizures after status epilepticus. Epilepsia 45:1488–1497

    Article  CAS  PubMed  Google Scholar 

  15. Brandt C, Bethmann K, Gastens AM, Löscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211

    Article  CAS  PubMed  Google Scholar 

  16. Cario CL, Farrell TC, Milanese C, Burton EA (2011) Automated measurement of zebrafish larval movement. J Physiol 589(Pt 15):3703–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chege SW, Hortopan GA, Dinday T, Baraban SC (2012) Expression and function of KCNQ channels in larval zebrafish. Dev Neurobiol 72(2):186–198

    Article  CAS  PubMed  Google Scholar 

  18. Derkx-Overduin LM (1994) Slow-release phenytoin in canine epilepsy. Thesis, Faculty of Veterinary Medicine, Utrecht, the Netherlands

    Google Scholar 

  19. Feldmann M, Asselin MC, Liu J, Wang S, McMahon A, Anton-Rodriguez J et al (2013) P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol 12:777–785

    Article  CAS  PubMed  Google Scholar 

  20. Frey H-H, Löscher W (1985) Pharmacokinetics of anti-epileptic drugs in the dog: a review. J Vet Pharmacol Ther 8:219–233

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich RW, Genoud C, Wanner AA (2013) Analyzing the structure and function of neuronal circuits in zebrafish. Front Neural Circuits 7:71

    Article  PubMed Central  PubMed  Google Scholar 

  22. Haefely W, Facklam M, Schoch P, Martin JR, Bonetti EP, Moreau JL et al (1992) Partial agonists of benzodiazepine receptors for the treatment of epilepsy, sleep, and anxiety disorders. Adv Biochem Psychopharmacol 47:379–394

    CAS  PubMed  Google Scholar 

  23. Hardy BT, Patterson EE, Cloyd JM, Hardy RM, Leppik IE (2012) Double-masked, placebo-controlled study of intravenous levetiracetam for the treatment of status epilepticus and acute repetitive seizures in dogs. J Vet Intern Med 26:334–340

    Article  CAS  PubMed  Google Scholar 

  24. Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34:453–468

    Article  CAS  PubMed  Google Scholar 

  25. Hochman DW, Baraban SC, Owens JW, Schwartzkroin PA (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270:99–102

    Article  CAS  PubMed  Google Scholar 

  26. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  CAS  PubMed  Google Scholar 

  27. Hortopan GA, Dinday MT, Baraban SC (2010) Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci 30(41):13718–13728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hunt RF, Hortopan GA, Gillespie A, Baraban SC (2012) A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 237(1):199–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP et al (2008) Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol 4(9):490–503

    Article  CAS  PubMed  Google Scholar 

  31. Kahle KT, Staley KJ (2008) The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Neurosurg Focus 25(3):1–8

    Article  Google Scholar 

  32. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen HW, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6):1069–1077

    Article  CAS  PubMed  Google Scholar 

  33. Kwon YS, Pineda E, Auvin S, Shin D, Mazarati A, Sankar R (2013) Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 10:30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Leppik IE, Patterson EN, Coles LD, Craft EM, Cloyd JC (2011) Canine status epilepticus: a translational platform for human therapeutic trials. Epilepsia 52(Suppl 8):31–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lowenstein DH (2009) Epilepsy after head injury: an overview. Epilepsia 50(Suppl 2):4–9

    Article  PubMed  Google Scholar 

  36. Löscher W (1981) Plasma levels of valproic acid and its metabolites during continued treatment in dogs. J Vet Pharmacol Ther 4:111–119

    Article  PubMed  Google Scholar 

  37. Löscher W, Schwartz-Porsche D, Frey H-H, Schmidt D (1985) Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneim-Forsch (Drug Res) 35:82–87

    Google Scholar 

  38. Löscher W (1986) Experimental models for intractable epilepsy in nonprimate animal species. In: Schmidt D, Morselli PL (eds) Intractable epilepsy: experimental and clinical aspects. Raven Press, New York, pp 25–37

    Google Scholar 

  39. Löscher W, Hönack D, Scherkl R, Hashem A, Frey H-H (1990) Pharmacokinetics, anticonvulsant efficacy and adverse effects of the β-carboline abecarnil, a novel ligand for benzodiazepine receptors, after acute and chronic administration in dogs. J Pharmacol Exp Ther 255:541–548

    PubMed  Google Scholar 

  40. Löscher W, Rundfeldt C (1991) Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. J Pharmacol Exp Ther 258:483–489

    PubMed  Google Scholar 

  41. Löscher W (1993) Abecarnil shows reduced tolerance development and dependence potential in comparison to diazepam: animal studies. In: Stephens DN (ed) Anxiolytic β-carbolines. From molecular biology to the clinic. Springer, Berlin, pp 96–112

    Chapter  Google Scholar 

  42. Löscher W, Rundfeldt C, Hönack D (1993) Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur J Neurosci 5:1545–1550

    Article  PubMed  Google Scholar 

  43. Löscher W, Hönack D (1994) Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. Eur J Pharmacol 259:R3–R5

    Article  PubMed  Google Scholar 

  44. Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258

    Article  PubMed  Google Scholar 

  45. Löscher W, Potschka H, Rieck S, Tipold A, Rundfeldt C (2004) Anticonvulsant efficacy of the low-affinity partial benzodiazepine receptor agonist ELB 138 in a dog seizure model and in epileptic dogs with spontaneously recurrent seizures. Epilepsia 45(10):1228–1239

    Article  PubMed  Google Scholar 

  46. Löscher W (2007) The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug administration in rat models of epilepsy. Epilepsia 48:1245–1258

    Article  PubMed  Google Scholar 

  47. Löscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62:668–700

    Article  PubMed Central  PubMed  Google Scholar 

  48. Löscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52(4):657–678

    Article  PubMed  Google Scholar 

  49. Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368

    Article  PubMed  Google Scholar 

  50. Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov 12:757–776

    Article  PubMed  Google Scholar 

  51. Löscher W, Hoffmann K, Twele F, Potschka H, Töllner K (2013) The novel antiepileptic drug imepitoin compares favourably to other GABA-mimetic drugs in a seizure threshold model in mice and dogs. Pharmacol Res 77:39–46

    Article  PubMed  Google Scholar 

  52. Löscher W, Puskarjov M, Kaila K (2013) Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69:62–74

    Article  PubMed  Google Scholar 

  53. Mahmood F, Mozere M, Zdebik AA, Stanescu HC, Tobin J, Beales PL et al (2013) Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis Model Mech 6(3):652–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J et al (2011) Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8(2):304–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. McMillan FD (1999) The placebo effect in animals. J Am Vet Med Assoc 215(7):992–999

    CAS  PubMed  Google Scholar 

  56. Miles R, Blaesse P, Huberfeld G, Wittner L, Kaila K (2012) Chloride homeostasis and GABA signaling in temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. Oxford University Press, New York, pp 581–590

    Chapter  Google Scholar 

  57. Munana KR, Zhang D, Patterson EE (2010) Placebo effect in canine epilepsy trials. J Vet Intern Med 24(1):166–170

    Article  CAS  PubMed  Google Scholar 

  58. Munana KR, Thomas WB, Inzana KD, Nettifee-Osborne JA, McLucas KJ, Olby NJ et al (2012) Evaluation of levetiracetam as adjunctive treatment for refractory canine epilepsy: a randomized, placebo-controlled, crossover trial. J Vet Intern Med 26:341–348

    Article  CAS  PubMed  Google Scholar 

  59. Oakley JC, Kalume F, Catterall WA (2011) Insights into pathophysiology and therapy from a mouse model of Dravet syndrome. Epilepsia 52(Suppl 2):59–61

    Article  PubMed Central  PubMed  Google Scholar 

  60. Oakley JC, Cho AR, Cheah CS, Scheuer T, Catterall WA (2013) Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome. J Pharmacol Exp Ther 345(2):215–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Panier T, Romano SA, Olive R, Pietri T, Sumbre G, Candelier R et al (2013) Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy. Front Neural Circuits 7:65

    Article  PubMed Central  PubMed  Google Scholar 

  62. Perucca E, French J, Bialer M (2007) Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 6(9):793–804

    Article  CAS  PubMed  Google Scholar 

  63. Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10(2):173–186

    Article  PubMed  Google Scholar 

  64. Potschka H, Fischer A, von Rüden EL, Hülsmeyer V, Baumgärtner W (2013) Canine epilepsy as a translational model? Epilepsia 54(4):571–579

    Article  CAS  PubMed  Google Scholar 

  65. Ramirez IB, Pietka G, Jones DR, Divecha N, Alia A, Baraban SC et al (2012) Impaired neural development in a zebrafish model for Lowe syndrome. Hum Mol Genet 21(8):1744–1759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Riban V, Bouilleret V, Pham L, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112(1):101–111

    Article  CAS  PubMed  Google Scholar 

  67. Speciale J, Dayrell-Hart B, Steinberg SA (1991) Clinical evaluation of gamma-vinyl-gamma-aminobutyric acid for control of epilepsy in dogs. J Am Vet Med Assoc 198:995–1000

    CAS  PubMed  Google Scholar 

  68. Srivastava AK, White HS (2013) Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats. Epilepsy Res 104:26–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Steinmetz S, Tipold A, Löscher W (2013) Epilepsy after head injury in dogs: a natural model of posttraumatic epilepsy. Epilepsia 54(4):580–588

    Article  PubMed  Google Scholar 

  70. Teng Y, Xie X, Walker S, Saxena M, Kozlowski DJ, Mumm JS et al (2011) Loss of zebrafish lgi1b leads to hydrocephalus and sensitization to pentylenetetrazol induced seizure-like behavior. PLoS One 6(9):e24596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Watanabe Y, Takechi K, Fujiwara A, Kamei C (2010) Effects of antiepileptics on behavioral and electroencephalographic seizure induced by pentetrazol in mice. J Pharmacol Sci 112(3):282–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

With gratitude and special thanks to Scott Baraban’s postdoctoral mentor Phil Schwartzkroin. Scott’s years in Seattle were rich in scientific interactions and opportunities. The environment created by Phil and Scott’s fellow trainees (Daryl Hochman, Jim Owens, Catherine Woolley and Jurgen Wenzel) was conducive to open discussion, lively debate and exciting discoveries. Phil’s scholarly approach to science and passion for epilepsy research was a guiding force in Scott’s career. With the laboratory at UCSF, Scott strives to carry on some of these same principles. Wolfgang Löscher acknowledges the many thoughtful and constructive discussions with Phil that he had as an author of invited reviews in Epilepsia during the many years that Phil acted as a Managing Editor for this journal.

Other Acknowledgements Scott Baraban acknowledges funding from the National Institutes of Health, Citizens United for Research in Epilepsy and Dravet Syndrome Foundation, and Wolfgang Löscher funding from the German Research Foundation, the FP7 program of the European Commission and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott C. Baraban or Wolfgang Löscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baraban, S.C., Löscher, W. (2014). What New Modeling Approaches Will Help Us Identify Promising Drug Treatments?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics