Skip to main content

What Non-neuronal Mechanisms Should Be Studied to Understand Epileptic Seizures?

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

While seizures ultimately result from aberrant firing of neuronal networks, several laboratories have embraced a non-neurocentric view of epilepsy to show that other cells in the brain also bear an etiologic impact in epilepsy. Astrocytes and brain endothelial cells are examples of controllers of neuronal homeostasis; failure of proper function of either cell type has been shown to have profound consequences on neurophysiology. Recently, an even more holistic view of the cellular and molecular mechanisms of epilepsy has emerged to include white blood cells, immunological synapses, the extracellular matrix and the neurovascular unit. This review will briefly summarize these findings and propose mechanisms and targets for future research efforts on non-neuronal features of neurological disorders including epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott NJ, Khan EU, Rollinson CM, Reichel A, Janigro D, Dombrowski SM et al (2002) Drug resistance in epilepsy: the role of the blood-brain barrier. Novartis Found Symp 243:38–47

    Article  CAS  PubMed  Google Scholar 

  2. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  3. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344

    Article  CAS  PubMed  Google Scholar 

  4. Bauer S, Koller M, Cepok S, Todorova-Rudolph A, Nowak M, Nockher WA et al (2008) NK and CD4+ T cell changes in blood after seizures in temporal lobe epilepsy. Exp Neurol 211:370–377

    Article  CAS  PubMed  Google Scholar 

  5. Binder DK, Nagelhus EA, Ottersen OP (2012) Aquaporin-4 and epilepsy. Glia 60:1203–1214

    Article  PubMed  Google Scholar 

  6. Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-Hitschfeld T et al (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713

    Article  CAS  PubMed  Google Scholar 

  7. Boison D (2012) Adenosine dysfunction in epilepsy. Glia 60:1234–1243

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Pechoux S et al (2010) Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. Brain 133:2749–2762

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cornford EM, Oldendorf WH (1986) Epilepsy and the blood-brain barrier. Adv Neurol 44:787–812

    CAS  PubMed  Google Scholar 

  10. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed Central  PubMed  Google Scholar 

  11. D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM, Janigro D (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18:4425–4438

    PubMed  Google Scholar 

  12. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  13. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D et al (2009) Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci 29:10588–10599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dityatev A (2010) Remodeling of extracellular matrix and epileptogenesis. Epilepsia 51(Suppl 3):61–65

    Article  CAS  PubMed  Google Scholar 

  15. Dityatev A, Seidenbecher CI, Schachner M (2010) Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 33:503–512

    Article  CAS  PubMed  Google Scholar 

  16. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W et al (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506

    Article  CAS  PubMed  Google Scholar 

  17. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  18. Emmi A, Wenzel HJ, Schwartzkroin PA, Taglialatela M, Castaldo P, Bianchi L et al (2000) Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J Neurosci 20:3915–3925

    CAS  PubMed  Google Scholar 

  19. Fabene PF, Navarro MG, Martinello M, Rossi B, Merigo F, Ottoboni L et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14:1377–1383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K et al (2010) Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A 107:3799–3804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D et al (2010) Pattern of P450 expression at the human blood-brain barrier: Roles of epileptic condition and laminar flow. Epilepsia 51:1408–1417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ghosh C, Marchi N, Desai NK, Puvenna V, Hossain M, Gonzalez-Martinez J et al (2011) Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia 52:562–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  CAS  PubMed  Google Scholar 

  24. Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia. Neurosurgery 60:940–948

    Article  PubMed  Google Scholar 

  25. Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, Brondi M et al (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8:e1000352

    Article  PubMed Central  PubMed  Google Scholar 

  26. Granata T, Marchi N, Carlton E, Ghosh C, Gonzalez-Martinez J, Alexopoulos AV et al (2009) Management of the patient with medically refractory epilepsy. Expert Rev Neurother 9:1791–1802

    Article  PubMed Central  PubMed  Google Scholar 

  27. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Heja L, Nyitrai G, Kekesi O, Dobolyi A, Szabo P, Fiath R et al (2012) Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 10:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hitiris N, Mohanraj R, Norrie J, Sills GJ, Brodie MJ (2007) Predictors of pharmacoresistant epilepsy. Epilepsy Res 75:192–196

    Article  CAS  PubMed  Google Scholar 

  31. Hochman DW, Baraban SC, Owens JW, Schwartzkroin PA (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270:99–102

    Article  CAS  PubMed  Google Scholar 

  32. Hynes RO (2004) The emergence of integrins: a personal and historical perspective. Matrix Biol 23:333–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L et al (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133:2734–2748

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kersante F, Rowley SC, Pavlov I, Gutierrez-Mecinas M, Semyanov A, Reul JM et al (2013) A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 591:2429–2441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Krizanac-Bengez L, Mayberg MR, Janigro D (2004) The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res 26:846–853

    Article  CAS  PubMed  Google Scholar 

  36. Kullmann DM (2000) Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog Brain Res 125:339–351

    Article  CAS  PubMed  Google Scholar 

  37. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen HW, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077

    Article  CAS  PubMed  Google Scholar 

  38. Lahtinen L, Huusko N, Myohanen H, Lehtivarjo AK, Pellinen R, Turunen MP et al (2009) Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus. Neuroscience 163:316–328

    Article  CAS  PubMed  Google Scholar 

  39. Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–8548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  41. Loscher W (2007) Mechanisms of drug resistance in status epilepticus. Epilepsia 48(Suppl 8):74–77

    Article  PubMed  Google Scholar 

  42. Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  Google Scholar 

  43. Loscher W, Sills GJ (2007) Drug resistance in epilepsy: why is a simple explanation not enough? Epilepsia 48:2370–2372

    Article  PubMed  Google Scholar 

  44. Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 44:619–639

    CAS  PubMed  Google Scholar 

  45. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N et al (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48(4):732–742

    Article  CAS  PubMed  Google Scholar 

  46. Marchi N, Fan QY, Ghosh C, Fazio V, Bertolini F, Betto G et al (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Marchi N, Gonzalez-Martinez J, Nguyen MT, Granata T, Janigro D (2010) Transporters in drug-refractory epilepsy: clinical significance. Clin Pharmacol Ther 87:13–15

    Article  CAS  PubMed  Google Scholar 

  48. Marchi N, Granata T, Freri E, Ciusani E, Puvenna V, Teng Q et al (2011) Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One 6:e18200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Marchi N, Hallene KL, Kight KM, Cucullo L, Moddel G, Bingaman W et al (2004) Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Med 2:37

    Article  PubMed Central  PubMed  Google Scholar 

  50. Marchi N, Johnson A, Puvenna V, Tierney W, Ghosh C, Cucullo L et al (2011) Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 52:1627–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Marchi N, Oby E, Fernandez N, Uva L, de Curtis M, Batra A et al (2007) In vivo and in vitro effects of pilocarpine: relevance to epileptogenesis. Epilepsia 48(10):1934–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  CAS  PubMed  Google Scholar 

  53. McRae PA, Baranov E, Rogers SL, Porter BE (2012) Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36:3471–3482

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H et al (2011) Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 31:12963–12971

    Article  CAS  PubMed  Google Scholar 

  55. Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59:1567–1578

    Article  PubMed  Google Scholar 

  56. Ndode-Ekane XE, Pitkanen A (2013) Urokinase-type plasminogen activator receptor modulates epileptogenesis in mouse model of temporal lobe epilepsy. Mol Neurobiol 47:914–937

    Article  CAS  PubMed  Google Scholar 

  57. Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    Article  CAS  PubMed  Google Scholar 

  58. Nobile C, Michelucci R, Andreazza S, Pasini E, Tosatto SC, Striano P (2009) LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum Mutat 30:530–536

    Article  CAS  PubMed  Google Scholar 

  59. Oby E, Janigro D (2006) The blood-brain barrier and epilepsy. Epilepsia 47:1761–1774

    Article  CAS  PubMed  Google Scholar 

  60. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI et al (2008) Antiepileptic drugs – best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies. Epilepsia 49:1239–1276

    Article  CAS  PubMed  Google Scholar 

  62. Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkanen A et al (2011) Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience 194:208–219

    Article  CAS  PubMed  Google Scholar 

  63. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797

    Article  CAS  PubMed  Google Scholar 

  65. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH et al (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  CAS  PubMed  Google Scholar 

  66. Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A et al (2006) SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 15:1195–1207

    Article  CAS  PubMed  Google Scholar 

  67. Sanchez Alvarez JC, Serrano Castro PJ, Serratosa Fernandez JM (2007) Clinical implications of mechanisms of resistance to antiepileptic drugs. Neurologist 13:S38–S46

    Article  PubMed  Google Scholar 

  68. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Google Scholar 

  69. Schulte U, Thumfart JO, Klocker N, Sailer CA, Bildl W, Biniossek M et al (2006) The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 49:697–706

    Article  CAS  PubMed  Google Scholar 

  70. Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85:423–436

    Article  CAS  PubMed  Google Scholar 

  71. Schwartzkroin PA (1977) Further characteristics of hippocampal CA1 cells in vitro. Brain Res 128:53–68

    Article  CAS  PubMed  Google Scholar 

  72. Schwartzkroin PA (2012) Why – and how – do we approach basic epilepsy research? In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. Oxford, New York, pp 24–37

    Google Scholar 

  73. Schwartzkroin PA, Baraban SC, Hochman DW (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 32:275–285

    Article  CAS  PubMed  Google Scholar 

  74. Schwartzkroin PA, Mathers LH (1978) Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 157:1–10

    Article  CAS  PubMed  Google Scholar 

  75. Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117–130

    Article  CAS  PubMed  Google Scholar 

  76. Schwartzkroin PA, Prince DA (1979) Recordings from presumed glial cells in the hippocampal slice. Brain Res 161:533–538

    Article  CAS  PubMed  Google Scholar 

  77. Sisodiya SM, Goldstein DB (2007) Drug resistance in epilepsy: more twists in the tale. Epilepsia 48:2369–2370

    Article  PubMed  Google Scholar 

  78. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed Central  PubMed  Google Scholar 

  79. Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9

    Article  CAS  PubMed  Google Scholar 

  80. Song I, Volynski K, Brenner T, Ushkaryov Y, Walker M, Semyanov A (2013) Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources. Front Cell Neurosci 7:23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587

    Google Scholar 

  82. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ et al (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296

    Article  CAS  PubMed  Google Scholar 

  84. Uva L, Librizzi L, Marchi N, Noe F, Bongiovanni R, Vezzani A et al (2008) Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood-brain barrier permeability. Neuroscience 151:303–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534

    Article  PubMed  Google Scholar 

  86. Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349:147–160

    Article  PubMed  Google Scholar 

  87. Wu X, Reddy DS (2012) Integrins as receptor targets for neurological disorders. Pharmacol Ther 134:68–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements 

This work was supported by the National Institutes of Health (R01NS078307, R01NS43284, R41MH093302, R21NS077236, R42MH093302, and R21HD057256 to DJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Janigro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Janigro, D., Walker, M.C. (2014). What Non-neuronal Mechanisms Should Be Studied to Understand Epileptic Seizures?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics