Skip to main content

The Neuronal Base of Perceptual Learning and Skill Acquisition

  • Chapter
  • First Online:
International Handbook of Research in Professional and Practice-based Learning

Part of the book series: Springer International Handbooks of Education ((SIHE))

Abstract

Procedural and perceptual learning are important processes involved in skill acquisition and the formation of expertise. This chapter provides an overview of recent research on the neuroscientific investigation of these different learning forms underlying the acquisition of skills. We focus on low-level processes in perception and motor control and how these low-level processes are improved by learning. Other forms of neural plasticity like adaptation, habituation, sensitization, conditioning and extinction are differentiated from procedural and perceptual learning. A brief introduction to the neuroanatomical basis of visual function is given. We next review the research on the cognitive neuroscience of these forms of learning with a focus on studies that use functional magnetic resonance imaging (fMRI). Recent results on dopaminergic and cholinergic processes underlying learning are discussed in the context of a top-down attention-gated model of perceptual learning. Finally an overview is given of research on skill acquisition and the implications of this research on the design of learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbach, D., Cutler, A. J., & Ronda, J. M. (2008). A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. The Journal of Neuroscience, 28(11), 2766–2772. doi:10.1523/JNEUROSCI.5548-07.2008.

    Article  Google Scholar 

  • Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard-Poulsen, P., et al. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(44), 15601–15610.

    Article  Google Scholar 

  • Amiez, C., Neveu, R., Warrot, D., Petrides, M., Knoblauch, K., & Procyk, E. (2013). The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. The Journal of Neuroscience, 33(5), 2217–2228.

    Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 11219–11224.

    Article  Google Scholar 

  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.

    Article  Google Scholar 

  • Beer, A. L., Vartak, D., & Greenlee, M. W. (2013). Nicotine facilitates memory consolidation in perceptual learning. Neuropharmacology, 64, 443–451.

    Article  Google Scholar 

  • Bernard, J. A., & Seidler, R. D. (2013). Cerebellar contributions to visuomotor adaptation and motor sequence learning: An ALE meta-analysis. Frontiers in Human Neuroscience, 7, 27. doi:10.3389/fnhum.2013.00027.

    Article  Google Scholar 

  • Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237–260.

    Google Scholar 

  • Cain, M. S., Landau, A. N., & Shimamura, A. P. (2012). Action video game experience reduces the cost of switching tasks. Attention, Perception, & Psychophysics, 74(4), 641–647.

    Article  Google Scholar 

  • Carew, T., Castellucci, V. F., & Kandel, E. R. (1979). Sensitization in Aplysia: Restoration of transmission in synapses inactivated by long-term habituation. Science (New York, NY), 205(4404), 417–419.

    Article  Google Scholar 

  • Carew, T. J., Walters, E. T., & Kandel, E. R. (1981). Classical conditioning in a simple withdrawal reflex in Aplysia californica. Journal of Neuroscience, 1(12), 1426–1437.

    Google Scholar 

  • Carey, L., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: A randomized controlled trial. Neurorehabilitation and Neural Repair, 25(4), 304–313.

    Article  Google Scholar 

  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167.

    Article  Google Scholar 

  • Castellucci, V. F., Carew, T. J., & Kandel, E. R. (1978). Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science (New York, NY), 202(4374), 1306–1308.

    Article  Google Scholar 

  • Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32(2), 359–374.

    Article  Google Scholar 

  • Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. de C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex (New York, NY: 1991), 19(2), 315–326.

    Google Scholar 

  • Daniel, R., & Pollmann, S. (2010). Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. The Journal of Neuroscience, 30(1), 47–55.

    Article  Google Scholar 

  • Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.

    Article  Google Scholar 

  • Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.

    Article  Google Scholar 

  • Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., et al. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109–1132.

    Article  Google Scholar 

  • Fahle, M. (2005). Perceptual learning: Specificity versus generalization. Current Opinion in Neurobiology, 15(2), 154–160.

    Article  Google Scholar 

  • Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning (p. 2002). Cambridge, MA: MIT Press.

    Google Scholar 

  • Fine, I., & Jacobs, R. A. (2002). Comparing perceptual learning tasks: A review. Journal of Vision, 2(2), 190–203.

    Article  Google Scholar 

  • Fitzgerald, M. B., & Wright, B. A. (2011). Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task. The Journal of the Acoustical Society of America, 129(2), 898–906.

    Article  Google Scholar 

  • Frank, S. M., Reavis, E. A., Tse, P. U., & Greenlee, M. W. (2014). Neural mechanisms of feature conjunction learning: Enduring changes in occipital cortex after a week of training. Human Brain Mapping, 35, 1201–1211.

    Google Scholar 

  • Gais, S., & Born, J. (2004). Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2140–2144. doi:10.1073/pnas.0305404101.

    Article  Google Scholar 

  • Gibson, E. (1963). Perceptual learning. Annual Review of Psychology, 14, 29–56.

    Article  Google Scholar 

  • Gopher, D., Well, M., & Bareket, T. (1994). Transfer of skill from a computer game trainer to flight. Human Factors, 36(3), 387–405.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.

    Article  Google Scholar 

  • Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology: CB, 22(6), R197–R206.

    Article  Google Scholar 

  • Greenlee, M. W., & Heitger, F. (1988). The functional role of contrast adaptation. Vision Research, 28(7), 791–797.

    Article  Google Scholar 

  • Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.

    Article  Google Scholar 

  • Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16, 710–715.

    Article  Google Scholar 

  • Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier discrimination task. Vision Research, 37(15), 2133–2141.

    Article  Google Scholar 

  • Higuchi, S., Holle, H., Roberts, N., Eickhoff, S. B., & Vogt, S. (2012). Imitation and observational learning of hand actions: Prefrontal involvement and connectivity. NeuroImage, 59(2), 1668–1683.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.

    Google Scholar 

  • Hughson, A. L., & Boakes, R. A. (2009). Passive perceptual learning in relation to wine: Short-term recognition and verbal description. Quarterly Journal of Experimental Psychology (2006), 62(1), 1–8.

    Article  Google Scholar 

  • Jäncke, L., Koeneke, S., Hoppe, A., Rominger, C., & Hänggi, J. (2009). The architecture of the golfer’s brain. PLoS One, 4(3), e4785.

    Article  Google Scholar 

  • Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. Journal of Cognitive Neuroscience, 24(6), 1447–1461.

    Article  Google Scholar 

  • Kahnt, T., Grueschow, M., Speck, O., & Haynes, J.-D. (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron, 70(3), 549–559.

    Article  Google Scholar 

  • Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences of the United States of America, 88(11), 4966–4970.

    Article  Google Scholar 

  • Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365(6443), 250–252.

    Article  Google Scholar 

  • Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science (New York, NY), 265(5172), 679–682.

    Article  Google Scholar 

  • Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.

    Article  Google Scholar 

  • Kassubek, J., Schmidtke, K., Kimmig, H., Lücking, C. H., & Greenlee, M. W. (2001). Changes in cortical activation during mirror reading before and after training: An fMRI study of procedural learning. Brain Research. Cognitive Brain Research, 10(3), 207–217.

    Article  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science (New York, NY), 279(5357), 1714–1718.

    Article  Google Scholar 

  • Kim, J., Lee, H. M., Kim, W. J., Park, H. J., Kim, S. W., Moon, D. H., et al. (2008). Neural correlates of pre-performance routines in expert and novice archers. Neuroscience Letters, 445(3), 236–241.

    Article  Google Scholar 

  • Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.

    Article  Google Scholar 

  • Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., et al. (2011). The neural basis of video gaming. Translational Psychiatry, 1, e53.

    Article  Google Scholar 

  • Kyndt, E., Onghena, P., Smet, K., & Dochy, F. (Accepted). Employees’ learning intention: Comparing low- and high-qualified employees. International Journal of Educational and Vocational Guidance.

    Google Scholar 

  • Lee, B. B., Martin, P. R., & Grünert, U. (2010). Retinal connectivity and primate vision. Progress in Retinal and Eye Research, 29(6), 622–639.

    Article  Google Scholar 

  • Lee, H., Voss, M. W., Prakash, R. S., Boot, W. R., Vo, L. T. K., Basak, C., et al. (2012). Videogame training strategy-induced change in brain function during a complex visuomotor task. Behavioural Brain Research, 232(2), 348–357.

    Article  Google Scholar 

  • LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. The Journal of Comparative Neurology, 191(1), 1–51.

    Article  Google Scholar 

  • Levi, D. M., & Li, R. W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research, 49(21), 2535–2549.

    Article  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.

    Article  Google Scholar 

  • Löwel, S., Schmidt, K. E., Kim, D. S., Wolf, F., Hoffsümmer, F., Singer, W., & Bonhoeffer, T. (1998). The layout of orientation and ocular dominance domains in area 17 of strabismic cats. European Journal of Neuroscience, 10(8), 2629–2643.

    Article  Google Scholar 

  • Mednick, S., Nakayama, K., & Stickgold, R. (2003). Sleep-dependent learning: A nap is as good as a night. Nature Neuroscience, 6(7), 697–698. doi:10.1038/nn1078.

    Article  Google Scholar 

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341–349.

    Article  Google Scholar 

  • Mollon, J. D., & Danilova, M. V. (1996). Three remarks on perceptual learning. Spatial Vision, 10(1), 51–58.

    Article  Google Scholar 

  • Moreno, M. M., Linster, C., Escanilla, O., Sacquet, J., Didier, A., & Mandairon, N. (2009). Olfactory perceptual learning requires adult neurogenesis. Proceedings of the National Academy of Sciences, 106(42), 17980–17985.

    Article  Google Scholar 

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.

    Article  Google Scholar 

  • Nomoto, K., Schultz, W., Watanabe, T., & Sakagami, M. (2010). Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. The Journal of Neuroscience, 30(32), 10692–10702.

    Google Scholar 

  • Nyberg, L., Eriksson, J., Larsson, A., & Marklund, P. (2006). Learning by doing versus learning by thinking: An fMRI study of motor and mental training. Neuropsychologia, 44(5), 711–717.

    Article  Google Scholar 

  • Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (G. V. Anrep, Trans.). London: Oxford University Press.

    Google Scholar 

  • Pérès, M., van de Moortele, P. F., Pierard, C., Lehericy, S., Satabin, P., Le Bihan, D., & Guezennec, C. Y. (2000). Functional magnetic resonance imaging of mental strategy in a simulated aviation performance task. Aviation, Space, and Environmental Medicine, 71(12), 1218–1231.

    Google Scholar 

  • Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018–1021.

    Article  Google Scholar 

  • Poldrack, R. A. (2002). Neural systems for perceptual skill learning. Behavioral and Cognitive Neuroscience Reviews, 1(1), 76–83.

    Article  Google Scholar 

  • Poldrack, R. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex (New York, NY: 1991), 8(1), 1–10.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., Lamantia, A. S., McNamara, J. O., & Williams, M. (2004). Neuroscience (3rd ed.). New York: Sinauer Press.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., & Lamantia, A. S. (2008). Neuroscience (4th ed.). New York: Sinauer Press.

    Google Scholar 

  • Robertson, E. M. (2004). Skill learning: Putting procedural consolidation in context. Current biology: CB, 14(24), R1061–R1063.

    Article  Google Scholar 

  • Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64–71.

    Article  Google Scholar 

  • Rokem, A., & Silver, M. A. (2010). Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Current Biology: CB, 20(19), 1723–1728.

    Article  Google Scholar 

  • Sagi, D. (2011). Perceptual learning in vision research. Vision Research, 51(13), 1552–1566.

    Article  Google Scholar 

  • Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73(6), 1195–1203.

    Article  Google Scholar 

  • Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science (New York, NY), 267(5198), 699–701.

    Article  Google Scholar 

  • Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 1664–1670.

    Article  Google Scholar 

  • Schmidt-Wilcke, T., Rosengarth, K., Luerding, R., Bogdahn, U., & Greenlee, M. W. (2010). Distinct patterns of functional and structural neuroplasticity associated with learning Morse code. NeuroImage, 51(3), 1234–1241.

    Article  Google Scholar 

  • Seitz, A. R., & Watanabe, T. (2003). Psychophysics: Is subliminal learning really passive? Nature, 422(6927), 36.

    Article  Google Scholar 

  • Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9(7), 329–334.

    Article  Google Scholar 

  • Steele, C. J., Scholz, J., Douaud, G., Johansen-Berg, H., & Penhune, V. B. (2012). Structural correlates of skilled performance on a motor sequence task. Frontiers in Human Neuroscience, 6, 289.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tang, K., Staines, W. R., Black, S. E., & McIlroy, W. E. (2009). Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI. Journal of Neuroscience Methods, 178(1), 65–74.

    Article  Google Scholar 

  • Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18(6), 1029–1043.

    Article  Google Scholar 

  • Tsushima, Y., Sasaki, Y., & Watanabe, T. (2006). Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science (New York, NY), 314(5806), 1786–1788. doi:10.1126/science.1133197.

    Article  Google Scholar 

  • Tsushima, Y., Seitz, A. R., & Watanabe, T. (2008). Task- irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 18(12), 516–517.

    Article  Google Scholar 

  • Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78(3), 553–564.

    Article  Google Scholar 

  • Wan, X., Takano, D., Asamizuya, T., Suzuki, C., Ueno, K., Cheng, K., et al. (2012). Developing intuition: Neural correlates of cognitive-skill learning in caudate nucleus. The Journal of Neuroscience, 32(48), 17492–17501.

    Google Scholar 

  • Watanabe, T., Náñez, Y., & Sasak, S. (2001). Perceptual learning without perception. Nature, 413, 844–848.

    Article  Google Scholar 

  • Webster, M. A., Kaping, D., Mizokami, Y., & Duhamel, P. (2004). Adaptation to natural facial categories. Nature, 428(6982), 557–561.

    Article  Google Scholar 

  • Werner, J. S. & Chalupa, L. M. (Eds.). (2013). The new visual neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.

    Google Scholar 

  • Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2011). Cortical fMRI activation to opponents’ body kinematics in sport-related anticipation: Expert-novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216–221.

    Article  Google Scholar 

  • Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., et al. (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology, 19(15), 1278–1282.

    Article  Google Scholar 

  • Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3172–3177.

    Article  Google Scholar 

Suggested Readings

  • Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning (p. 2002). Cambridge, MA: MIT Press.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., & Lamantia, A. S. (2008). Neuroscience (4th ed.). New York: Sinauer Press.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Sebastian M. Frank (Dartmouth College) for his critical and helpful comments. The author also acknowledges funding support from the Federal Ministry for Education and Research (BMBF, Project “Brain Plasticity and Perceptual Learning”) and the German Research Council (DFG, FOR 1075, Project GR988/22-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Greenlee .

Editor information

Editors and Affiliations

Glossary

11C-raclopride positron emission tomography 

A brain imaging technique involving the radioactive isotope 11C combined with raclopride to label dopaminergic brain regions.

Anterior cingulum 

Cortical area in medial prefrontal cortex thought to process various aspects of attention and executive control.

Caudate nucleus 

A component of the subcortical basal ganglia involved in motor control, learning, memory and other forms of cognition.

Cholinesterase inhibitor 

Or acetylcholinesterase inhibitor is a chemical substance that inhibits acetylcholinesterase enzyme from breaking down acetylcholine thereby increasing cholinergic transmission.

Extrastriate visual cortex 

Secondary visual cortex beyond the striate (stripped) cortex representing area 17 (containing primary visual cortex).

fMRI 

Functional magnetic resonance imaging, a non-invasive, in-vivo brain imaging technique.

Fusiform gyrus 

Part of the ventral visual cortex involved in object and face recognition.

LGN 

Lateral geniculate nucleus of the thalamus involved in visual processing with magno-, parvo- and koniocellular layers.

Laminae I–VI 

Six layers of the neocortex, where lamina I borders the pia mater and lamina VI the white matter.

Mid-cingulate/paracingulate cortex 

Parts of the cingular cortex in the medial neocortex.

Nucleus accumbens 

A dopaminergic structure in the midbrain thought to be involved in reward processing.

Nucleus basalis 

Nucleus basalis of Meynert: a group of neurons in the substantia innominate in the basal forebrain involved in cholinergic innervation of the cortex.

Occipito-temporal cortex 

Part of the ventral visual pathway at the junction between the occipital and temporal lobes.

OC 

Optic chiasma, a location in the brain where the optic nerves partially bifurcate.

Physostigmin 

A cholinesterase inhibitor that acts by interfering with the metabolism of acetylcholine.

REM 

Rapid-eye-movement sleep, a form of paradoxical sleep in which the person executes rapid eye movements during dream-like states.

RSVP 

Rapid serial presentation task, a visual task involving the presentation of a rapid sequence of images containing two or more targets that require a motor response from the participant.

SN 

Substantia nigra, a brain structure in the midbrain involved in motor control and reward processing.

SWS 

Slow-wave sleep, stage 3 to 4 of (deep) sleep that is associated of low frequency EEG delta waves.

VBM 

Voxel-based morphometry, a data analysis technique that determines statistical differences in grey and white matter voxel intensities. Used to measure cortical grey and white matter thickness.

Ventral striatum 

Part of the basal ganglia involving the nucleus accumbens, the olfactory tubercle, as well as the caudate nucleus and putamen.

VTA 

Ventral tegmentum area, a dopaminergic structure in the midbrain involved in dopaminergic innervation and control of attention.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Greenlee, M.W. (2014). The Neuronal Base of Perceptual Learning and Skill Acquisition. In: Billett, S., Harteis, C., Gruber, H. (eds) International Handbook of Research in Professional and Practice-based Learning. Springer International Handbooks of Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8902-8_12

Download citation

Publish with us

Policies and ethics