Skip to main content

Zwitterionic Nanocarriers for Gene Delivery

  • Chapter
  • First Online:

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

Abstract

“Gene therapy” is studied for its potential in modifying the genetic information of an organism and to treat cancerous, cardiovascular, neurological, and infectious diseases. A key limitation in the current development of human gene therapy is the lack of safe, efficient, and controllable gene delivery methods. Hundreds of clinical trials in human gene therapy have been approved worldwide since the 1980s but is met with only a small number of successes. This review discusses the hurdles and hopes of zwitterionic polybetaines in molecular cargo formulation of multi-functional gene nanocarriers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase

APE:

Antipolyelectrolyte effect

BCs:

Block copolymers

BMA:

n-Butyl methacrylate

CBMA:

Carboxybetaine methacrylate

CST:

Critical solution temperature

DMAEMA–MPC:

2-(Dimethylamino)ethyl methacrylate-block-2-(methacryloyloxyethyl Phosphorylcholine)

MPC:

Methacryloyloxyethyl phosphorylcholine

MPC-co-LMA2:

2-Methacryloyloxyethyl phosphorylcholine-co-lauryl methacrylat

MPTMS:

3-Methacryloyloxypropyl trimethoxysilane

NIPAAm:

N-isopropylacrylamide

PS:

Phosphatidylserine

PC:

Phosphorylcholine

PAA:

Poly (acrylic acid)

PDMAEMA:

Poly(2-dimethylamino)ethyl methacrylate

PBMA:

Poly(butyl methacrylate)

PCBMA:

Poly(carboxybetaine methacrylate)

PEG:

Poly(ethylene glycol)

PLL:

Poly(L-lysine)

PSD:

Poly(methacryloyl sulfadimethoxine)

PMB:

Poly(MPC-co-BMA)

PHEMA:

Poly(N-(2-hydroxpropyl)methacrylamide)

PPO:

Poly(propylene oxide)

PSBMA:

Poly(sulfobetaine methacrylate)

PEI:

Polyethyleneimine

PZ:

Polyzwitterions

RES:

Reticuloendothelial system

R9:

Nona-arginine peptide

SAMs:

Self-assembled Monolayers

SCID:

Severe combined immunodeficiency

siRNA:

Small interfering RNA

SBMA:

Sulfobetaine methacrylate

SPR:

Surface plasmon resonance

References

  • Agarwal S, Zhang Y, Maji S, Greiner A (2012) PDMAEMA based gene delivery materials. Mater Today 15(9):388–393

    Article  CAS  Google Scholar 

  • Akita H, Kudo A, Minoura A, Yamaguti M, Khalil IA, Moriguchi R, Masuda T, Danev R, Nagayama K, Kogure K, Harashima H (2009) Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 30(15):2940–2949

    Article  CAS  PubMed  Google Scholar 

  • Allon N, Saxena A, Chambers C, Doctor BP (2012) A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Controlled Release 160(2):217–224

    Article  CAS  Google Scholar 

  • Ratner BD (2000) Blood compatibility at the close of the 20th century. Symposium proceedings, 4–6 Aug 1999, Seattle, Washington (J Biomater Sci. Polymer edition 11(11):1107–1119)

    Google Scholar 

  • Bode SA, Thevenin M, Bechara C, Sagan S, Bregant S, Lavielle S, Chassaing G, Burlina F (2012) Self-assembling mini cell-penetrating peptides enter by both direct translocation and glycosaminoglycan-dependent endocytosis. Chem Commun 48(57):7179–7181

    Article  CAS  Google Scholar 

  • Chan P, Kurisawa M, Chung JE, Yang YY (2007) Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 28(3):540–549

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Chen S, Zhang Z, Jiang S (2006) Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 22(5):2222–2226

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY (2008) A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 24(10):5453–5458

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Ko CY, Shih YJ, Quemener D, Deratani A, Wei TC, Wang DM, Lai JY (2009a) Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. J Membr Sci 345(1–2):160–169

    Article  CAS  Google Scholar 

  • Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A (2009b) Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules 10(8):2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY (2010) Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 26(5):3522–3530

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Shih YJ, Ko CY, Jhong JF, Liu YL, Wei TC (2011) Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation. Langmuir 27(9):5445–5455

    Article  CAS  PubMed  Google Scholar 

  • Chen SF, Jiang SY (2008) A new avenue to nonfouling materials. Adv Mater 20(2):335

    Article  CAS  Google Scholar 

  • Culver KW, Anderson WF, Blaese RM (1991) Lymphocyte gene therapy. Hum Gene Ther 2(2):107–109

    Article  CAS  PubMed  Google Scholar 

  • Dai F, Liu W (2011) Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Biomaterials 32(2):628–638

    Article  CAS  PubMed  Google Scholar 

  • Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866

    Article  CAS  PubMed  Google Scholar 

  • Endsley AN, Ho RJ (2012) Design and characterization of novel peptide-coated lipid nanoparticles for targeting anti-HIV drug to CD4 expressing cells. AAPS J 14(2):225–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng W, Brash JL, Zhu S (2006) Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 27(6):847–855

    Article  CAS  PubMed  Google Scholar 

  • Fields RJ, Cheng CJ, Quijano E, Weller C, Kristofik N, Duong N, Hoimes C, Egan ME, Saltzman WM (2012) Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery. J Controlled Release 164(1):41–48

    Article  CAS  Google Scholar 

  • Funhoff AM, Monge S, Teeuwen R, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, Haddleton DM, Hennink WE, van Nostrum CF (2005) PEG shielded polymeric double-layered micelles for gene delivery. J Controlled Release 102(3):711–724

    Article  CAS  Google Scholar 

  • Gao X, Kim KS, Liu D (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9(1):E92–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao CL, Li GZ, Xue H, Yang W, Zhang FB, Jiang SY (2010a) Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 31(7):1486–1492

    Article  CAS  PubMed  Google Scholar 

  • Gao JQ, Zhao QQ, Lv TF, Shuai WP, Zhou J, Tang GP, Liang WQ, Tabata Y, Hu YL (2010b) Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm 387(1–2):286–294

    Article  CAS  PubMed  Google Scholar 

  • Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK (2000) Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 202(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 7(4):1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012—an update. J Gene Med 15(2):65–77

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Brit J Cancer 64(3):425–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Edit 45(8):1198–1215

    Article  CAS  Google Scholar 

  • Han G, Park B (1995) Childrens choice in conflict—application of the theory of individualism-collectivism. J Cross Cult Psychol 26(3):298–313

    Article  Google Scholar 

  • He Y, Chang Y, Hower JC, Zheng J, Chen S, Jiang S (2008) Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. Phys Chem Chem Phys 10(36):5539–5544

    Article  CAS  PubMed  Google Scholar 

  • Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17(9):2841–2850

    Article  CAS  Google Scholar 

  • Horbett TA (1993) Principles underlying the role of adsorbed plasma-proteins in blood interactions with foreign materials. Cardiovasc Pathol 2(3):S137–S148

    Article  Google Scholar 

  • Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N (1992) Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res 26(12):1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Ishihara K (2005) Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 381(3):534–546

    Article  CAS  PubMed  Google Scholar 

  • Jabr-Milane L, van Vlerken L, Devalapally H, Shenoy D, Komareddy S, Bhavsar M, Amiji M (2008) Multi-functional nanocarriers for targeted delivery of drugs and genes. J Controlled Release 130(2):121–128

    Article  CAS  Google Scholar 

  • Jafari M, Soltani M, Naahidi S, Karunaratne DN, Chen P (2012) Nonviral approach for targeted nucleic acid delivery. Curr Med Chem 19(2):197–208

    Article  CAS  PubMed  Google Scholar 

  • Jewell CM, Lynn DM (2008) Surface-mediated delivery of DNA: cationic polymers take charge. Curr Opin Colloid Interface Sci 13(6):395–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    Article  CAS  PubMed  Google Scholar 

  • Jones RA, Poniris MH, Wilson MR (2004) pDMAEMA is internalised by endocytosis but does not physically disrupt endosomes. J Controlled Release 96(3):379–391

    Article  CAS  Google Scholar 

  • Kane RS, Deschatelets P, Whitesides GM (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19(6):2388–2391

    Article  CAS  Google Scholar 

  • Ke JH, Young TH (2010) Multilayered polyplexes with the endosomal buffering polycation in the core and the cell uptake-favorable polycation in the outer layer for enhanced gene delivery. Biomaterials 31(35):9366–9372

    Article  CAS  PubMed  Google Scholar 

  • Kunath K, von Harpe A, Fischer D, Peterson H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Controlled Release 89(1):113–125

    Article  CAS  Google Scholar 

  • Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Lam JK, Ma Y, Armes SP, Lewis AL, Baldwin T, Stolnik S (2004) Phosphorylcholine-polycation diblock copolymers as synthetic vectors for gene delivery. J Controlled Release 100(2):293–312

    Article  CAS  Google Scholar 

  • Lane DP, Cheok CF, Lain S (2010) p53-Based cancer therapy. Cold Spring Harb Perspect Biol 2(9):a001222

    Article  PubMed Central  PubMed  Google Scholar 

  • Layman JM, Ramirez SM, Green MD, Long TE (2009) Influence of polycation molecular weight on POLY(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro. Biomacromolecules 10(5):1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloid Surface B 18(3–4):261–275

    Article  CAS  Google Scholar 

  • Long SF, Clarke S, Davies MC, Lewis AL, Hanlon GW, Lloyd AW (2003) Controlled biological response on blends of a phosphorylcholine-based copolymer with poly(butyl methacrylate). Biomaterials 24(23):4115–4121

    Article  CAS  PubMed  Google Scholar 

  • Maingi V, Kumar MV, Maiti PK (2012) PAMAM dendrimer-drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116(14):4370–4376

    Article  CAS  PubMed  Google Scholar 

  • Maysinger D, Piccardo P, Cuello AC (1995) Microencapsulation and the grafting of genetically transformed cells as therapeutic strategies to rescue degenerating neurons of the CNS. Rev Neurosci 6(1):15–33

    CAS  PubMed  Google Scholar 

  • Murray KD, Etheridge CJ, Shah SI, Matthews DA, Russell W, Gurling HM, Miller AD (2001) Enhanced cationic liposome-mediated transfection using the DNA-binding peptide mu (mu) from the adenovirus core. Gene Ther 8(6):453–460

    Article  CAS  PubMed  Google Scholar 

  • Naeye B, Raemdonck K, Remaut K, Sproat B, Demeester J, De Smedt SC (2010) PEGylation of biodegradable dextran nanogels for siRNA delivery. Eur J Pharm Sci 40(4):342–351

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi N, Williams DF (2003) Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials 24(13):2431–2435

    Article  CAS  PubMed  Google Scholar 

  • Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45(7):1153–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira AC, Neves Silva JP, Coutinho PJ, Gomes AA, Coutinho OP, Real Oliveira ME (2010) Monoolein as helper lipid for non-viral transfection in mammals. J Controlled Release 148(1):e91–e92

    Google Scholar 

  • Olsson P, Sanchez J, Mollnes TE, Riesenfeld J (2000) On the blood compatibility of end-point immobilized heparin. J Biomater Sci Polym Ed 11(11):1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58(4):467–486

    Article  CAS  PubMed  Google Scholar 

  • Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J Am Chem Soc 115(23):10714–10721

    Article  CAS  Google Scholar 

  • Schenborn ET (2000) Transfection technologies. Methods Mol Biol 130:91–102

    CAS  PubMed  Google Scholar 

  • Schwarzenberger P, Huang W, Oliver P, Osidipe T, Theodossiou C, Kolls JK (2001) Poly-L-lysine-based molecular conjugate vectors: a high efficiency gene transfer system for human progenitor and leukemia cells. Am J Med Sci 321(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman VA, Na K, Bae YH (2006) pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Shih YJ, Chang Y (2010) Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir 26(22):17286–17294

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Nakashima H (2004) Current status of delivery systems to improve target efficacy of oligonucleotides. Curr Pharm Des 10(7):785–796

    Article  CAS  PubMed  Google Scholar 

  • Sinclair A, Bai T, Carr LR, Ella-Menye JR, Zhang L, Jiang S (2013) Engineering buffering and hydrolytic or photolabile charge shifting in a polycarboxybetaine ester gene delivery platform. Biomacromolecules 14(5):1587–1593

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  CAS  PubMed  Google Scholar 

  • Somasundaran T, Deo N, Somasundaran P (2002) Zwitterionic latex particles as an effective carrier for DNA. J Colloid Interface Sci 246(2):223–226

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Li LF, Nakaji-Hirabayashi T, Kitano H, Ohno K, Matsuoka K, Saruwatari Y (2012) Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate. Colloid Surface B 94:107–113

    Article  CAS  Google Scholar 

  • Takeda N, Nakamura E, Yokoyama M, Okano T (2004) Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Controlled Release 95(2):343–355

    Article  CAS  Google Scholar 

  • Tamura A, Oishi M, Nagasaki Y (2010) Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J Controlled Release 146(3):378–387

    Article  CAS  Google Scholar 

  • Tian H, Li F, Chen J, Huang Y, Chen X (2012) N-isopropylacrylamide-modified polyethylenimines as effective gene carriers. Macromol Biosci 12(12):1680–1688

    Article  CAS  PubMed  Google Scholar 

  • Trabulo S, Resina S, Simoes S, Lebleu B, Pedroso de Lima MC (2010) A non-covalent strategy combining cationic lipids and CPPs to enhance the delivery of splice correcting oligonucleotides. J Controlled Release 145(2):149–158

    Google Scholar 

  • Turk H, Haag R, Alban S (2004) Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem 15(1):162–167

    Article  PubMed  Google Scholar 

  • Ushitora M, Sakurai F, Yamaguchi T, Nakamura S, Kondoh M, Yagi K, Kawabata K, Mizuguchi H (2010) Prevention of hepatic ischemia-reperfusion injury by pre-administration of catalase-expressing adenovirus vectors. J Controlled Release 142(3):431–437

    Article  CAS  Google Scholar 

  • Venkataraman S, Ong WL, Ong ZY, Joachim Loo SC, Ee PL, Yang YY (2011) The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers. Biomaterials 32(9):2369–2378

    Google Scholar 

  • Vessillier S, Adams G, Montero-Melendez T, Jones R, Seed M, Perretti M, Chernajovsky Y (2012) Molecular engineering of short half-life small peptides (VIP, alphaMSH and gamma(3)MSH) fused to latency-associated peptide results in improved anti-inflammatory therapeutics. Ann Rheum Dis 71(1):143–149

    Article  CAS  PubMed  Google Scholar 

  • Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7(1):46–59

    Article  CAS  PubMed  Google Scholar 

  • Walrant A, Bechara C, Alves ID, Sagan S (2012) Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they? Nanomedicine 7(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Chen JX, Sun YX, Deng JZ, Li C, Zhang XZ, Zhuo RX (2011) Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Controlled Release 155(1):26–33

    Article  CAS  Google Scholar 

  • Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhaes M, Del Amo DS, Pai S, Opazo F, Rizzoli SO, Yan A, Levy M (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther—Nucleic Acids 1:e21

    Google Scholar 

  • Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32(8–9):799–837

    Article  CAS  Google Scholar 

  • Wong SP, Argyros O, Howe SJ, Harbottle RP (2011) Systemic gene transfer of polyethylenimine (PEI)-plasmid DNA complexes to neonatal mice. J Controlled Release 150(3):298–306

    Article  CAS  Google Scholar 

  • Wu L, Jasinski J, Krishnan S (2012) Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: A comparison of the surface properties and antibiofouling behavior. J Appl Polym Sci 124(3):2154–2170

    Article  CAS  Google Scholar 

  • Wu YZ, Ihme S, Feuring-Buske M, Kuan SL, Eisele K, Lamla M, Wang YR, Buske C, Weil T (2013) A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthc Mater 2(6):884–894

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chao T, Chen S, Jiang S (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22(24):10072–10077

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008a) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29(32):4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chao T, Jiang S (2008b) Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. J Phys Chem B 112(17):5327–5332

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shih, YJ., Tsai, CW., Tayo, L.L., Chang, Y. (2014). Zwitterionic Nanocarriers for Gene Delivery. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_3

Download citation

Publish with us

Policies and ethics