Skip to main content

Magnetically Responsive (Nano)Biocomposites

  • Chapter
  • First Online:
Intracellular Delivery II

Abstract

Many biological materials have been successfully used in various areas of bioscience, biotechnology and environmental technology applications. Biological materials are mainly diamagnetic, which means they do not interact significantly with external magnetic field. Using various postmagnetization procedures, biological materials can be converted into magnetically responsive composite materials which can be efficiently separated using simple magnets or magnetic separation systems. The prepared magnetic biocomposites can be used for many applications, such as immobilization of target compounds, as parts of biosensors, as whole cell biocatalysts or for magnetic removal and separation of xenobiotics and biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DBT:

Dibenzothiophene

EPEC:

Enteropathogenic Escherichia coli

PS:

Phosphatidylserine

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

VTEC:

Verocytotoxigenic Escherichia coli

References

  • Al-Dujaili EAS, Forrest GC, Edwards CRW, Landon J (1979) Evaluation and application of magnetizable charcoal for separation in radioimmunoassays. Clin Chem 25(8):1402–1405

    CAS  PubMed  Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill LF, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102(5):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Bartonkova H, Mashlan M, Medrik I, Jancik D, Zboril R (2007) Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract. Chem Pap 61(5):413–416

    Article  CAS  Google Scholar 

  • Cumbal LH, SenGupta AK (2005) Preparation and characterization of magnetically active dual-zone sorbent. Ind Eng Chem Res 44(3):600–605

    Article  CAS  Google Scholar 

  • Dirican EK, Ozgun OD, Akarsu S, Akin KO, Ercan O, Ugurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A (2008) Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 25(8):375–381

    Article  PubMed Central  PubMed  Google Scholar 

  • Dzamukova MR, Zamaleeva AI, Ishmuchametova DG, Osin YN, Kiyasov AP, Nurgaliev DK, Ilinskaya ON, Fakhrullin RF (2011) A direct technique for magnetic functionalization of living human cells. Langmuir 27(23):14386–14393

    Article  CAS  PubMed  Google Scholar 

  • Fakhrullin RF, Garcia-Alonso J, Paunov VN (2010a) A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter 6(2):391–397

    Article  CAS  Google Scholar 

  • Fakhrullin RF, Shlykova LV, Zamaleeva AI, Nurgaliev DK, Osin YN, Garcia-Alonso J, Paunov VN (2010b) Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromol Biosci 10(10):1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  • Griffin T, Mosbach K, Mosbach R (1981) Magnetic biospecific affinity adsorbents for immunoglobulin and enzyme isolation. Appl Biochem Biotechnol 6:283–292

    Article  CAS  PubMed  Google Scholar 

  • Ino K, Ito A, Honda H (2007) Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng 97(5):1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Hibino E, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004) A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. Biochem Eng J 20(2–3):119–125

    Article  CAS  Google Scholar 

  • Ito A, Kamihira M (2011) Tissue engineering using magnetite nanoparticles. Prog Mol Biol Transl Sci 104:355–395

    Article  CAS  PubMed  Google Scholar 

  • Ji YQ, Hu YT, Tian Q, Shao XZ, Li JY, Safarikova M, Safarik I (2010) Biosorption of strontium ions by magnetically modified yeast cells. Sep Sci Technol 45(10):1499–1504

    Article  CAS  Google Scholar 

  • Korneva G, Ye HH, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5(5):879–884

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Hong RY, Luo GH, Zheng Y, Li HZ, Wei DG (2010) An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater 25(3):192–198

    Article  CAS  Google Scholar 

  • Li X-S, Zhu G-T, Luo Y-B, Yuan B-F, Feng Y-Q (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247

    Article  CAS  Google Scholar 

  • Makker K, Agarwal A, Sharma RK (2008) Magnetic activated cell sorting (MACS): utility in assisted reproduction. Indian J Exp Biol 46(7):491–497

    PubMed  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Article  Google Scholar 

  • Minullina RT, Osin YN, Ishmuchametova DG, Fakhrullin RF (2011) Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: A Caenorhabtidis elegans study. Langmuir 27(12):7708–7713

    Article  CAS  PubMed  Google Scholar 

  • Mockovciakova A, Orolinova Z, Skvarla J (2010) Enhancement of the bentonite sorption properties. J Hazard Mater 180(1–3):274–281

    Article  CAS  PubMed  Google Scholar 

  • Mosbach K, Andersson L (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270(5634):259–261

    Article  CAS  PubMed  Google Scholar 

  • Mosiniewicz-Szablewska E, Safarikova M, Safarik I (2007) Magnetic studies of ferrofluid-modified spruce sawdust. J Phys D-Appl Phys 40(21):6490–6496

    Article  CAS  Google Scholar 

  • Mosiniewicz-Szablewska E, Safarikova M, Safarik I (2010) Magnetic studies of ferrofluid-modified microbial cells. J Nanosci Nanotechnol 10(4):2531–2536

    Article  CAS  PubMed  Google Scholar 

  • Nakahira A, Nagata H, Takimura M, Fukunishi K (2007) Synthesis and evaluation of magnetic active charcoals for removal of environmental endocrine disrupter and heavy metal ion. J Appl Phys 101 (9):Article No. 09J114

    Google Scholar 

  • Oliveira LCA, Rios R, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40(12):2177–2183

    Article  CAS  Google Scholar 

  • Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7(1):43–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patzak M, Dostalek P, Fogarty RV, Safarik I, Tobin JM (1997) Development of magnetic biosorbents for metal uptake. Biotechnol Tech 11(7):483–487

    Article  CAS  Google Scholar 

  • Payne MJ, Campbell S, Kroll RG (1993) Lectin-magnetic separation can enhance methods for the detection of Staphylococcus aureus, Salmonella enteritidis and Listeria monocytogenes. Food Microbiol 10(1):75–83

    Article  CAS  Google Scholar 

  • Porter J, Pickup RW (1998) Separation of natural populations of coliform bacteria from freshwater and sewage by magnetic-bead cell sorting. J Microbiol Methods 33(3):221–226

    Article  Google Scholar 

  • Porter J, Robinson J, Pickup R, Edwards C (1998) An evaluation of lectin-mediated magnetic bead cell sorting for the targeted separation of enteric bacteria. J Appl Microbiol 84(5):722–732

    Article  CAS  PubMed  Google Scholar 

  • Pospiskova K, Prochazkova G, Safarik I (2013) One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles. Lett Appl Microbiol 56(6):456–461

    Article  CAS  PubMed  Google Scholar 

  • Pospiskova K, Safarik I (2013) Magnetically modified spent grain as a low-cost, biocompatible and smart carrier for enzyme immobilisation. J Sci Food Agric 93(7):1598–1602

    Article  CAS  PubMed  Google Scholar 

  • Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol 130:472–477

    Article  CAS  PubMed  Google Scholar 

  • Reidt U, Geisberger B, Heller C, Friedberger A (2011) Automated immunomagnetic processing and separation of Legionella pneumophila with manual detection by sandwich ELISA and PCR amplification of the ompS gene. J Lab Autom 16(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Safarik I, Safarikova M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B 722(1–2):33–53

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2007) Magnetically modified microbial cells: a new type of magnetic adsorbents. China Particuology 5(1–2):19–25

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2009) Magnetically responsive nonocomposite materials for bioapplications. Solid State Phenom 151:88–94

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2010) Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal. Phys Proc 9:274–278

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2012) Magnetic nanoparticles for in vitro biological and medical applications: An overview. In: Thanh NTK (ed) Magnetic nanoparticles: from fabrication to biomedical and clinical applications. CRC Press/Taylor and Francis, Boca Raton, pp 215–242

    Google Scholar 

  • Safarik I, Safarikova M (2014) One-step magnetic modification of non-magnetic solid materials. Int J Mater Res 105:104–107

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M, Forsythe SJ (1995) The application of magnetic separations in applied microbiology. J Appl Bacteriol 78(6):575–585

    Article  CAS  PubMed  Google Scholar 

  • Safarik I, Nymburska K, Safarikova M (1997) Adsorption of water-soluble organic dyes on magnetic charcoal. J Chem Technol Biotechnol 69(1):1–4

    Article  CAS  Google Scholar 

  • Safarik I, Lunackova P, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007a) Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung 61(3):247–253

    Article  CAS  Google Scholar 

  • Safarik I, Rego LFT, Borovska M, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007b) New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme Microb Technol 40(6):1551–1556

    Article  CAS  Google Scholar 

  • Safarik I, Sabatkova Z, Safarikova M (2008) Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells. J Agric Food Chem 56(17):7925–7928

    Article  CAS  PubMed  Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011a) Magnetic nanoparticles for biomedicine In: Prokop A (ed) Intracellular Delivery: Fundamentals and Applications. Springer, pp 363-372

    Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011b) Magnetically modified spent grain for dye removal. J Cereal Sci 53(1):78–80

    Article  CAS  Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011c) Magnetically responsive biocomposites for inorganic and organic xenobiotics removal. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Berlin, pp 301–320

    Google Scholar 

  • Safarik I, Horska K, Pospiskova K, Safarikova M (2012a) Magnetically responsive activated carbons for bio-and environmental applications. Int Rev Chem Eng 4(3):346–352

    Google Scholar 

  • Safarik I, Horska K, Pospiskova K, Safarikova M (2012b) One-step preparation of magnetically responsive materials from non-magnetic powders. Powder Technol 229:285–289

    Article  CAS  Google Scholar 

  • Safarik I, Horska K, Svobodova B, Safarikova M (2012c) Magnetically modified spent coffee grounds for dyes removal. Eur Food Res Technol 234(2):345–350

    Article  CAS  Google Scholar 

  • Safarik I, Pospiskova K, Horska K, Safarikova M (2012d) Potential of magnetically responsive (nano)biocomposites. Soft Matter 8:5407–5413

    Article  CAS  Google Scholar 

  • Safarik I, Horska K, Pospiskova K, Maderova Z, Safarikova M (2013) Microwave assisted synthesis of magnetically responsive composite materials. IEEE Trans Magn 49(1):213–218

    Article  Google Scholar 

  • Safarikova M, Ptackova L, Kibrikova I, Safarik I (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59(6):831–835

    Article  CAS  PubMed  Google Scholar 

  • Safarikova M, Pona BMR, Mosiniewicz-Szablewska E, Weyda F, Safarik I (2008) Dye adsorption on magnetically modified Chlorella vulgaris cells. Fresenius Environ Bull 17(4):486–492

    CAS  Google Scholar 

  • Safarikova M, Maderova Z, Safarik I (2009) Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis. Food Res Int 42(4):521–524

    Article  CAS  Google Scholar 

  • Schwickardi M, Olejnik S, Salabas EL, Schmidt W, Schuth F (2006) Scalable synthesis of activated carbon with superparamagnetic properties. Chem Commun 38:3987–3989

    Article  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Jendelova P (2005) Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci 1049:146–160

    Article  PubMed  Google Scholar 

  • Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Papisov MI, Smirnov VN (1985) Magnetic Sephadex as a carrier for enzyme immobilization and drug targeting. J Biomed Mater Res 19(4):461–466

    Article  CAS  PubMed  Google Scholar 

  • Uzun L, Saglam N, Safarikova M, Safarik I, Denizli A (2011) Copper biosorption on magnetically modified yeast cells under magnetic field. Sep Sci Technol 46(6):1045–1051

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  CAS  PubMed  Google Scholar 

  • Yavuz H, Denizli A, Gungunes H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52(2):253–260

    Article  CAS  Google Scholar 

  • Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Methods 3:509–513

    Article  CAS  Google Scholar 

  • Zborowski M, Tada Y, Malchesky PS, Hall GS (1993) Quantitative and qualitative analysis of bacteria in erbium(III) solution by thin-film magnetopheresis. Appl Environ Microbiol 59(4):1187–1193

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant Agency of the Czech Republic (Projects No. P503/11/2263 and 13-13709S) and by the Ministry of Education of the Czech Republic (research project LD13021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Šafařík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Šafařík, I., Pospíšková, K., Horská, K., Maděrová, Z., Šafaříková, M. (2014). Magnetically Responsive (Nano)Biocomposites. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_2

Download citation

Publish with us

Policies and ethics