Skip to main content

Computational Studies of Highly PEG-ylated Sterically Stabilized Micelles: Self-Assembly and Drug Solubilization

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

  • 1684 Accesses

Abstract

Self-assembled micelles of block copolymers, containing controllable physical, chemical, and biological properties, are strong candidates for new drug delivery platforms. Here, we summarize our studies of structure, dynamics and drug solubilization in micelles self-assembled from highly PEG-ylated block copolymers. First, we examined sterically stabilized micelles (SSM) formed by self-assembled phospholipids (DSPE–PEG2000) in pure water and isotonic HEPES-buffered saline solution. The observed micelle sizes of 2–15 nm were shown to largely depend on the solvent and the lipid concentration used. Computational modeling showed that micelle sizes are determined by the interactions of their charged –\( {\text{PO}}_{4}^{ - } \) groups with the present counterions. Second, we studied solubilization of prototypical therapeutic molecules, a drug bexarotene and a vasoactive intestinal peptide (VIP), in SSM, as observed in experiments. Free energy calculations revealed that molecules of bexarotene can reside at the micellar ionic interface of the PEG corona or in the alkane core center, where several bexarotene molecules can cluster and self-stabilize. Charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the –\( {\text{PO}}^{ - }_{4} \) groups of the lipids. The performed studies illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PEG:

Poly(ethylene) glycol

SSM:

Sterically stabilized micelles

DSPE–PEG2000:

1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol) 2000]

HEPES:

Hydroxyethyl piperazineethanesulfonic acid

VIP:

Vasoactive intestinal peptide

MD:

Molecular dynamics

References

  • Almgren M, Lofroth J-E (1981) Determination of micelle aggregation numbers and micelle fluidities from time-resolved fluorescence quenching studies. J Colloid Interf Sci 81:486–499

    Article  CAS  Google Scholar 

  • Anderson BD, Rytting JH, Higuchi T (1980) Solubility of polar organic solutes in nonaqueous systems: role of specific interactions. J Pharm Sci 69:676–680

    Article  CAS  PubMed  Google Scholar 

  • Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP (2005) Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 21:3279–3290

    Article  CAS  PubMed  Google Scholar 

  • Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H (2004) In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci 93:2476–2487

    Article  CAS  PubMed  Google Scholar 

  • Avdeef A, Testa B (2002) Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques. Cell Mol Life Sci 59:1681–1689

    Article  CAS  PubMed  Google Scholar 

  • Belsito S, Bartucci R, Montesano G, Marsh D, Sportelli L (2000) Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: interaction of dipalmitoyl n-poly(ethylene glycol) phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spin-label electron spin resonance. Biophys J 78:1420–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes De Oliveira CA, Werneck Guimaraes CR, De Mello H, Echevarria A, De Alencastro RB (2005) A molecular dynamics study on liquid 1-octanol. Part 3. Evaluating octanol/water partition coefficients of novel thrombin inhibitors via free-energy perturbations. Int J Quantum Chem 102:542–553

    Article  Google Scholar 

  • Hawker DW (1995) Application of regular solution theory to solubility in lipids and partitioning involving lipids. Toxicol Environ Chem 50:39–49

    Article  CAS  Google Scholar 

  • Hristova K, Needham D (1995) Phase behavior of a lipid/polymer-lipid mixture in aqueous medium. Macromolecules 28:991–1002

    Article  CAS  Google Scholar 

  • Huynh L, Grant J, Leroux J-C, Delmas P, Allen C (2008) Predicting the solubility of the anti-cancer agent docetaxel in small molecule excipients using computational methods. Pharm Res 25:147–157

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili J (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Johnsson M, Edwards K (2003) Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J 85:3839–3847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones MN (1995) The surface properties of phospholipid liposome systems and their characterisation. Adv Colloid Interfac 54:93–128

    Article  CAS  Google Scholar 

  • Kaler E, Murthy A, Rodriguez B, Zasadzinski J (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 245:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine 1:77–84

    Article  CAS  PubMed  Google Scholar 

  • Krishnadas A, Rubinstein I, Onyuksel H (2003) Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res 20:297–302

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Venable RM, MacKerell AD Jr, Pastor RW (2008) Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys J 95:1590–1599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 46:3–26

    Article  CAS  Google Scholar 

  • Luo L, Eisenberg A (2001) Thermodynamic stabilization mechanism of block copolymer vesicles. J Am Chem Soc 123:1012–1013

    Article  CAS  PubMed  Google Scholar 

  • Mazer NA, Benedek GB, Carey MC (1976) An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy. J Phys Chem 80:1075–1085

    Article  CAS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. BBA—Rev Biomembranes 1469:159–195

    CAS  Google Scholar 

  • Onyuksel H, Ikezaki H, Patel MP, Gao X, Rubinstein I (1999) A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm Res 16:155–160

    Article  CAS  PubMed  Google Scholar 

  • Onyuksel H, Mohanty PS, Rubinstein I (2009) Vip-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm 365:157–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel S, Lavasanifar A, Choi P (2008) Application of molecular dynamics simulation to predict the compatability between water-insoluble drugs and self-associating poly(ethylene oxide)-b-poly(-caprolactone) block copolymers. Biomacromolecules 9:3014–3023

    Article  CAS  PubMed  Google Scholar 

  • Patra N, Král P (2011) Controlled self-assembly of filled micelles on nanotubes. J Am Chem Soc 133:6146–6149

    Article  CAS  PubMed  Google Scholar 

  • Patton JS, Stone B, Papa C, Abramowitz R, Yalkowsky SH (1984) Solubility of fatty acids and other hydrophobic molecules in liquid trioleoylglycerol. J Lipid Res 25:189–197

    CAS  PubMed  Google Scholar 

  • Rane SS, Anderson BD (2008) What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev 60:638–656

    Article  CAS  PubMed  Google Scholar 

  • Schick MJ, Atlas SM, Eirich FR (1962) Micellar structure of nonionic detergents. J Phys Chem 66:1326–1333

    Article  CAS  Google Scholar 

  • Titov AV, Král P, Pearson R (2009) Sandwiched graphene-membrane superstructures. ACS Nano 4:229–234

    Article  Google Scholar 

  • Totrov M (2004) Accurate and efficient generalized born model based on solvent accessibility: derivation and application for logP octanol/water prediction and flexible peptide docking. J Comput Chem 25:609–619

    Article  CAS  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuković L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Král P, Onyuksel H (2011) Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 133:13481–13488

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuković L, Madriaga A, Kuzmis A, Banerjee A, Tang A, Tao K, Shah N, Král P, Onyuksel H (2013) Solubilization of therapeutic agents in micellar nanomedicines. Langmuir 29:15747–15754

    Article  PubMed  Google Scholar 

  • Zalipsky S (1995) Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjugate Chem 6:150–165

    Article  CAS  Google Scholar 

  • Zhang L, Yu K, Eisenberg A (1996) Ion-induced morphological changes in crew-cut aggregates of amphiphilic block copolymers. Science 272(5269):1777–1779

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Král .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Král, P., Vuković, L. (2014). Computational Studies of Highly PEG-ylated Sterically Stabilized Micelles: Self-Assembly and Drug Solubilization. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_16

Download citation

Publish with us

Policies and ethics