Skip to main content

Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

Abstract

Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Delivery of genetic materials into patient cells is limited since nucleic acids are vulnerable to degradation in extra- and intra-cellular environments. Design of delivery vehicles can overcome these limitations. Polymers and lipids are effective non-viral nucleic acid carriers; they can form stable complexes with nucleic acids known as polyplexes and lipoplexes. Despite the great amount of experimental work pursued on polymer or lipid based gene delivery systems, detailed atomic level information is needed for a better understanding of the roles the polymers and lipids play during delivery. This chapter will review molecular dynamics simulations performed on polyplexes and lipoplexes at critical stages of gene delivery. Interactions between various carriers and nucleic acids during the formation of polyplexes/lipoplexes, condensation and aggregation of nucleic acids facilitated by the carriers, binding of the polyplexes/lipoplexes to cell membrane, as well as their intracellular pathway are reviewed; and the gaps in the theoretical field are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RNAi :

RNA interference

dsRNA:

Double stranded RNA

RISC:

RNA-induced silencing complex

siRNA :

Short interfering RNA

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPE:

Dioleoylphosphatidylethanolamine

DOTAP:

1,2-Dioleoyl-3-trimethylammonium-propane

DMTAP:

Dimyristoyltrimethylammonium propane

DMPC:

Dimyristoylphosphatidylcholine

DPPC:

Dipalmitoylphosphatidylcholine

PAMAM:

Polyamidoamine

PBAE:

Poly(beta-amino ester)

PEI:

Polyethylenimine

PLL:

Poly-L-lysine

CDP:

Cyclodextrin-polycation

CME:

Clathrin-mediated endocytosis

CvME:

Caveolae/raft-mediated endocytosis

EGF:

Epidermal growth factor

MD:

Molecular dynamics

MM:

Molecular mechanics

QM:

Quantum mechanics

PME:

Particle mesh Ewald

PBC:

Periodic boundary conditions

DPD:

Dissipative particle dynamics

US:

Umbrella sampling

WHAM:

Weighted histogram analysis method

DFT:

Density functional theory

CG:

Coarse-graining

PTI:

Pancreatic trypsin inhibitor

ENM:

Elastic network model

LJ:

Lennard-Jones

MM-PBSA:

Molecular mechanic/Poisson–Boltzmann surface area

DAP:

1,3-Diaminopropane

DAPMA:

N,N-Di-(3-aminopropyl)-N-(methyl)amine

TAP:

Trimethylammonium

MC:

Monte Carlo

PMF:

Potential of mean force

CA:

Caprylic acid

LA:

Linoleic acid

References

  • Aliabadi HM, Landry B, Sun C et al (2012) Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials 33:2546–2569

    CAS  PubMed  Google Scholar 

  • Andersen H (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384

    CAS  Google Scholar 

  • Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    CAS  Google Scholar 

  • Bagai S, Sun C, Tang T (2013) Potential of mean force of polyethylenimine-mediated DNA attraction. J Phys Chem B 117:49–56

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Tarek M, Klein ML (1999) Molecular dynamics study of a lipid-DNA complex. J Phys Chem B 103:10075–10080

    CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    CAS  Google Scholar 

  • Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun CS, Jas GS, Choosakoonkriang S et al (2003) The structure of DNA within cationic lipid/DNA complexes. Biophys J 84:1114–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD et al (1983) Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  • Buneman O (1967) Time-reversible difference procedures. J Comput Phys 1:517–535

    Google Scholar 

  • Corsi J, Hawtin RW, Ces O et al (2010) DNA lipoplexes: formation of the inverse hexagonal phase observed by coarse-grained molecular dynamics simulation. Langmuir 26:12119–12125

    CAS  PubMed  Google Scholar 

  • Dai L, Mu Y, Nordenskiold L et al (2008) Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules. Phys Rev Lett 100:118301

    PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  • Dias RS, Pais AACC, Miguel MG et al (2003) Modeling of DNA compaction by polycations. J Chem Phys 119:8150–8157

    CAS  Google Scholar 

  • Ding HM, Ma YQ (2013) Design maps for cellular uptake of gene nanovectors by computer simulation. Biomaterials 34:8401–8407

    CAS  PubMed  Google Scholar 

  • Dinh AT, Pangarkar C, Theofanous T et al (2007) Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys J 92:831–846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123(Pt 8):1183–1189

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    CAS  PubMed  Google Scholar 

  • Elder RM, Emrick T, Jayaraman A (2011) Understanding the effect of polylysine architecture on DNA binding using molecular dynamics simulations. Biomacromolecules 12:3870–3879

    CAS  PubMed  Google Scholar 

  • Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347

    CAS  PubMed  Google Scholar 

  • Farago O, Gronbech-Jensen N (2009) Simulation of self-assembly of cationic lipids and DNA into structured complexes. J Am Chem Soc 131:2875–2881

    CAS  PubMed  Google Scholar 

  • Farago O, Gronbech-Jensen N, Pincus P (2006) Mesoscale computer modeling of lipid-DNA complexes for gene therapy. Phys Rev Lett 96:018102

    PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fynan EF, Webster RG, Fuller DH et al (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:11478–11482

    CAS  PubMed Central  PubMed  Google Scholar 

  • González MA (2011) Force fields and molecular dynamics simulations. Collect SFN 12:169–200

    Google Scholar 

  • Gosule LC, Schellman JA (1978) DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol 121:311–326

    CAS  PubMed  Google Scholar 

  • Goula D, Remy JS, Erbacher P et al (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5:712–717

    CAS  PubMed  Google Scholar 

  • Groenhof G (2013) Introduction to QM/MM simulations. In: Monticelli L, Salonen E (eds) Methods in molecular biology biomolecular simulations: methods and protocols. Springer Science Business Media, New York, pp 43–66

    Google Scholar 

  • Guo P, Coban O, Snead NM et al (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62:650–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi Y, Ullner M, Linse P (2002) A Monte Carlo study of solutions of oppositely charged polyelectrolytes. J Chem Phys 116:6836–6845

    CAS  Google Scholar 

  • Hayashi Y, Ullner M, Linse P (2003) Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content. J Phys Chem B 107:8198–8207

    CAS  Google Scholar 

  • Hayashi Y, Ullner M, Linse P (2004) Oppositely charged polyelectrolytes. Complex formation and effects of chain asymmetry. J Phys Chem B 108:15266–15277

    CAS  Google Scholar 

  • Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    CAS  PubMed  Google Scholar 

  • Hockney RW (1970) The potential calculation and some applications. Meth Comput Phys 9:135–211

    Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    PubMed  Google Scholar 

  • Hsu CY, Uludag H (2012) Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials 33:7834–7848

    CAS  PubMed  Google Scholar 

  • Ingólfsson HI, Lopez CA, Uusitalo JJ et al (2013) The power of coarse graining in biomolecular simulations. WIREs Comput Mol Sci

    Google Scholar 

  • Jensen LB, Mortensen K, Pavan GM et al (2010) Molecular characterization of the interaction between siRNA and PAMAM G7 dendrimers by SAXS, ITC, and molecular dynamics simulations. Biomacromolecules 11:3571–3577

    CAS  PubMed  Google Scholar 

  • Jensen LB, Pavan GM, Kasimova MR et al (2011) Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm 416:410–418

    CAS  PubMed  Google Scholar 

  • Jones SP, Pavan GM, Danani A et al (2010) Quantifying the effect of surface ligands on dendron-DNA interactions: insights into multivalency through a combined experimental and theoretical approach. Chemistry 16:4519–4532

    CAS  PubMed  Google Scholar 

  • Jorge AF, Dias RS, Pais AA (2012) Enhanced condensation and facilitated release of DNA using mixed cationic agents: a combined experimental and Monte Carlo study. Biomacromolecules 13:3151–3161

    CAS  PubMed  Google Scholar 

  • Journal of Gene Medicine (2013) [cited 2013 May 06]. Available from: www.wiley.co.uk/genmed/clinical

  • Karatasos K, Posocco P, Laurini E et al (2012) Poly(amidoamine)-based dendrimer/siRNA complexation studied by computer simulations: effects of pH and generation on dendrimer structure and siRNA binding. Macromol Biosci 12:225–240

    CAS  PubMed  Google Scholar 

  • Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53:341–358

    CAS  PubMed  Google Scholar 

  • Korolev N, Lyubartsev AP, Nordenskiold L et al (2001) Spermine: an “invisible” component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study. J Mol Biol 308:907–917

    CAS  PubMed  Google Scholar 

  • Korolev N, Lyubartsev AP, Laaksonen A et al (2002) On the competition between water, sodium ions, and spermine in binding to DNA: a molecular dynamics computer simulation study. Biophys J 82:2860–2875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korolev N, Lyubartsev AP, Laaksonen A et al (2003) A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations. Nucleic Acids Res 31:5971–5981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korolev N, Lyubartsev AP, Laaksonen A et al (2004a) Molecular dynamics simulation study of oriented polyamine- and Na-DNA: sequence specific interactions and effects on DNA structure. Biopolymers 73:542–555

    CAS  PubMed  Google Scholar 

  • Korolev N, Lyubartsev AP, Laaksonen A et al (2004b) A molecular dynamics simulation study of polyamine- and sodium-DNA. Interplay between polyamine binding and DNA structure. Eur Biophys J 33:671–682

    CAS  PubMed  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D et al (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    CAS  Google Scholar 

  • Lamoureux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025–3039

    CAS  Google Scholar 

  • Leach AR (2001) Molecular modeling principles and applications. Pearson Education Limited, Great Britain

    Google Scholar 

  • Levitt M, Warshel A (1975) Computer-simulation of protein folding. Nature 253:694–698

    CAS  PubMed  Google Scholar 

  • Lindahl ER (2008) Molecular dynamic simulations. In: Kukol A (ed) Methods in molecular biology molecular modeling of proteins. Humana Press, pp 3–23

    Google Scholar 

  • Lorenz C, Hadwiger P, John M et al (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 14:4975–4977

    CAS  PubMed  Google Scholar 

  • Lyubartsev A, Tu YQ, Laaksonen A (2009) Hierarchical multiscale modelling scheme from first principles to mesoscale. J Comput Theor Nanosci 6:951–959

    CAS  Google Scholar 

  • Maiti PK, Bagchi B (2006) Structure and dynamics of DNA-dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett 6:2478–2485

    CAS  PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    CAS  PubMed  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    CAS  PubMed  Google Scholar 

  • McNeish IA, Bell SJ, Lemoine NR (2004) Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther 11:497–503

    CAS  PubMed  Google Scholar 

  • Meller J (2001) Molecular dynamics. In: Encyclopedia of life sciences. Nature Publishing Group

    Google Scholar 

  • Mills M, Orr B, Banaszak Holl MM et al (2010) Microscopic basis for the mesoscopic extensibility of dendrimer-compacted DNA. Biophys J 98:834–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mills M, Orr BG, Banaszak Holl MM et al (2013) Attractive hydration forces in DNA-dendrimer interactions on the nanometer scale. J Phys Chem B 117:973–981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monard G, Merz KM (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911

    CAS  Google Scholar 

  • Monticelli L, Tieleman DP (2013) Force fields for classical molecular dynamics. In: Monticelli L, Salonen E (eds) Methods in molecular biology biomolecular simulations: methods and protocols. Springer Science Business Media, New York, pp 197–213

    Google Scholar 

  • Moret I, Esteban Peris J, Guillem VM et al (2001) Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 76:169–181

    CAS  PubMed  Google Scholar 

  • Nandy B, Maiti PK (2011) DNA compaction by a dendrimer. J Phys Chem B 115:217–230

    CAS  PubMed  Google Scholar 

  • Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Google Scholar 

  • Ouyang D, Zhang H, Herten DP et al (2010a) Structure, dynamics, and energetics of siRNA-cationic vector complexation: a molecular dynamics study. J Phys Chem B 114:9220–9230

    CAS  PubMed  Google Scholar 

  • Ouyang D, Zhang H, Parekh HS et al (2010b) Structure and dynamics of multiple cationic vectors-siRNA complexation by all-atomic molecular dynamics simulations. J Phys Chem B 114:9231–9237

    CAS  PubMed  Google Scholar 

  • Ouyang D, Zhang H, Parekh HS et al (2011) The effect of pH on PAMAM dendrimer-siRNA complexation: endosomal considerations as determined by molecular dynamics simulation. Biophys Chem 158:126–133

    CAS  PubMed  Google Scholar 

  • Pack DW, Hoffman AS, Pun S et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    CAS  PubMed  Google Scholar 

  • Patria RK, Beale PD (2011) Statistical mechanics. Elsevier, United States

    Google Scholar 

  • Pavan GM, Danani A, Pricl S et al (2009) Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand “sacrifice” and screening can enhance binding. J Am Chem Soc 131:9686–9694

    CAS  PubMed  Google Scholar 

  • Pavan GM, Albertazzi L, Danani A (2010a) Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J Phys Chem B 114:2667–2675

    CAS  PubMed  Google Scholar 

  • Pavan GM, Kostiainen MA, Danani A (2010b) Computational approach for understanding the interactions of UV-degradable dendrons with DNA and siRNA. J Phys Chem B 114:5686–5693

    CAS  PubMed  Google Scholar 

  • Pavan GM, Mintzer MA, Simanek EE et al (2010c) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Biomacromolecules 11:721–730

    CAS  PubMed  Google Scholar 

  • Pavan GM, Posocco P, Tagliabue A et al (2010d) PAMAM dendrimers for siRNA delivery: computational and experimental insights. Chemistry 16:7781–7795

    CAS  PubMed  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW et al (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    CAS  Google Scholar 

  • Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221

    CAS  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posocco P, Pricl S, Jones S et al (2010) Less is more—multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 1:393–404

    CAS  Google Scholar 

  • Potter H (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174:361–373

    CAS  PubMed  Google Scholar 

  • Rappe AK, Goddard IWA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    CAS  Google Scholar 

  • Razin S, Rozansky R (1959) Mechanism of the antibacterial action of spermine. Arch Biochem Biophys 81:36–54

    CAS  PubMed  Google Scholar 

  • Roth JA, Nguyen D, Lawrence DD et al (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 2:985–991

    CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    CAS  Google Scholar 

  • Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28:155–179

    CAS  PubMed  Google Scholar 

  • Salinas SRA (2001) Introduction to statistical physics. Springer, New York

    Google Scholar 

  • Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93

    CAS  PubMed  Google Scholar 

  • Savelyev A, Papoian GA (2007) Inter-DNA electrostatics from explicit solvent molecular dynamics simulations. J Am Chem Soc 129:6060–6061

    CAS  PubMed  Google Scholar 

  • Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide. Springer, New York

    Google Scholar 

  • Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322

    CAS  Google Scholar 

  • Schofield P (1973) Computer simulation studies of the liquid state. Comput Phys Commun 5:17–23

    CAS  Google Scholar 

  • Scott WRP, Hunenberger PH, Tironi IG et al (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  • Senn HM, Thiel W (2007) QM/MM methods for biological systems. Atomistic approaches in modern biology: from quantum chemistry to molecular simulations 268: 173–290

    Google Scholar 

  • Stevens MJ (2001) Simple simulations of DNA condensation. Biophys J 80:130–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Tang T, Uludag H (2011a) Molecular dynamics simulations of PEI mediated DNA aggregation. Biomacromolecules 12:3698–3707

    CAS  PubMed  Google Scholar 

  • Sun C, Tang T, Uludag H et al (2011b) Molecular dynamics simulations of DNA/PEI complexes: effect of PEI branching and protonation state. Biophys J 100:2754–2763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Tang T, Uludag H (2012a) Molecular dynamics simulations for complexation of DNA with 2 kDa PEI reveal profound effect of PEI architecture on complexation. J Phys Chem B 116:2405–2413

    CAS  PubMed  Google Scholar 

  • Sun C, Tang T, Uludag H (2012b) Probing the effects of lipid substitution on polycation mediated DNA aggregation: a molecular dynamics simulations study. Biomacromolecules 13:2982–2988

    CAS  PubMed  Google Scholar 

  • Sun C, Tang T, Uludag H (2013) A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials 34:2822–2833

    CAS  PubMed  Google Scholar 

  • Swope WC, Andersen HC, Berens PH et al (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637

    CAS  Google Scholar 

  • Szasz D (1996) Boltzmann’s ergodic hypothesis, a conjecture for centuries? Studia Scientiarum Mathematicarum Hungaria 31:299–322

    Google Scholar 

  • Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130–137

    CAS  PubMed  Google Scholar 

  • Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Google Scholar 

  • Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York

    Google Scholar 

  • Vasumathi V, Maiti PK (2010) Complexation of siRNA with dendrimer: a molecular modeling approach. Macromolecules 43:8264–8274

    CAS  Google Scholar 

  • Verlet L (1967) Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    CAS  Google Scholar 

  • Voth GA (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press/Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Voulgarakis NK, Rasmussen KO, Welch PM (2009) Dendrimers as synthetic gene vectors: cell membrane attachment. J Chem Phys 130:155101

    CAS  PubMed  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    CAS  PubMed  Google Scholar 

  • Warshel A, Sharma P, Kato M et al (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235

    CAS  PubMed  Google Scholar 

  • Wereszczynski J, McCammon JA (2012) Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Q Rev Biophys 45:1–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon CS, Park JH (2010) Ultrasound-mediated gene delivery. Expert Opin Drug Deliv 7:321–330

    CAS  PubMed  Google Scholar 

  • Zhang XX, McIntosh TJ, Grinstaff MW (2012) Functional lipids and lipoplexes for improved gene delivery. Biochimie 94:42–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng M, Pavan GM, Neeb M et al (2012) Targeting the blind spot of polycationic nanocarrier-based siRNA delivery. ACS Nano 6:9447–9454

    CAS  PubMed  Google Scholar 

  • Ziebarth J, Wang Y (2009) Molecular dynamics simulations of DNA-polycation complex formation. Biophys J 97:1971–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziebarth J, Wang Y (2010) Coarse-grained molecular dynamics simulations of DNA condensation by block copolymer and formation of core-corona structures. J Phys Chem B 114:6225–6232

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meneksedag-Erol, D., Sun, C., Tang, T., Uludag, H. (2014). Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_15

Download citation

Publish with us

Policies and ethics