Skip to main content

Membrane-Domain-Selective Drug Targeting Based on Lipid Modification

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

  • 1812 Accesses

Abstract

Cellular lipid bilayers are critical platforms for the myriad of functions performed by membrane proteins. Drugs modified with lipid membrane anchors can selectively target membrane proteins. In this review, we discuss preferences of representative lipidated molecules for specific cellular membrane domains and the recent progress in lipidated drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Endoplasmic reticulum

GPI:

Glycosylphosphatidylinositol

PEG:

Polyethylene glycol

CLIC:

Clathrin-independent carrier

GPCR:

G protein-coupled receptor

APP:

Amyloid precursor protein

HIV:

Human immunodeficiency virus

HBV:

Hepatitis B virus

PAR1:

Protease-activated receptor 1

CXCR4:

CXC-type receptor 4

SMO:

Smoothened

IGF1R:

Insulin-like growth factor 1 receptor

STAT3:

Signal transducer and activator of transcription 3

SH2:

Src homology 2

TRPV1:

Transient receptor potential vanilloid 1

PAT:

Palmitoyl acyl transferase

References

  • Avadisian M, Fletcher S, Liu B et al (2011) Artificially induced protein-membrane anchorage with cholesterol-based recognition agents as a new therapeutic concept. Angew Chem Int Ed 50:6248–6253

    Article  CAS  Google Scholar 

  • Bernard E, Parthasarathi L, Cho MK et al (2009) Ligand switching in cell-permeable peptides: manipulation of the α-integrin signature motif. ACS Chem Biol 4:457–471

    Article  CAS  PubMed  Google Scholar 

  • Bhagatji P, Leventis R, Comeau J et al (2009) Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins. J Cell Biol 186:615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogoyevitch MA, Barr RK, Ketterman AJ (2005) Peptide inhibitors of protein kinases-discovery, characterization and use. Biochim Biophys Acta 1754:79–99

    Article  CAS  PubMed  Google Scholar 

  • Boonyarattanakalin S, Martin SE, Dykstra SA et al (2004) Synthetic mimics of small mammalian cell surface receptors. J Am Chem Soc 126:16379–16386

    Article  CAS  PubMed  Google Scholar 

  • Carlson KE, McMurry TJ, Hnt SW III (2012) Pepducins: lipopeptide allosteric modulators of GPCR signaling. Drug Deliv Today Technol 9:e33–e39

    Article  CAS  Google Scholar 

  • Covic L, Misra M, Badar J et al (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Creaser SP, Peterson BR (2002) Sensitive and rapid analysis of protein palmitoylation with a synthetic cell-permeable mimic of Src oncoproteins. J Chem Soc 124:2444–2445

    Article  CAS  Google Scholar 

  • Ducker CE, Griffel LK, Smith RA et al (2006) Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol Cancer Ther 5:1647–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards RJ, moran N, Devocelle M et al (2007) Bioinformatic discovery of novel bioactive peptides. Nat Chem Biol 3:108–112

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Shen B, Flevaris P et al (2010) G protein subunit Gα13 binds to integirn αIIbβ3 aand mediates integrin “outside-in” signaling. Science 327:340–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins CD, Koellhoffer JF, Chandran K et al (2013) C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking. Bioorg Med Chem Lett 23:5356–5360

    Article  CAS  PubMed  Google Scholar 

  • Huang JS, Dong L, Kozasa T et al (2007) Signaling through Gα13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. J Biol Chem 282:10210–10222

    Article  CAS  PubMed  Google Scholar 

  • Ingallinella P, Bianchi E, Ladwa NA et al (2009) Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Pro Natl Acad Sci USA 106:5801–5806

    Article  CAS  Google Scholar 

  • Ishida M, Watanabe H, Takigawa K et al (2013) Synthetic self-localizing ligands that control the spatial location of proteins in living cells. J Am Chem Soc 135:12684–12689

    Article  CAS  PubMed  Google Scholar 

  • Johannessen L, Remsberg J, Gaponenko V et al (2011) Peptide structure stabilization by membrane anchoring and its general applicability to the development of potent cell-permeable inhibitors. Chem Bio Chem 12:914–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li CG, Tang W, Chi XJ et al (2013) A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide’s antiviral potency in vivo. J Virol 87:9223–9232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Callaghan K, Kuliopulos A, Covic L (2012) Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem 287:12787–12796

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen J, Dandri M, Mier W et al (2008) Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol 26:335–341

    Article  CAS  PubMed  Google Scholar 

  • Quoyer J, Janz JM, Luo J et al (2013) Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Pro Natl. Acad Sci USA 110:E5088–E5097

    Article  CAS  Google Scholar 

  • Rajendran L, Schneider A, Schlechtingen G et al (2008) Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 320:520–523

    Article  CAS  PubMed  Google Scholar 

  • Remsberg JR, Lou H, Tarasov SG et al (2007) Structural analogues of smoothened intracellular loops as potent inhibitors of hedgehog pathway and cancer cell growth. J Med Chem 50:4534–4538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590

    Article  CAS  PubMed  Google Scholar 

  • Robbins J, March SJ, Brown DA (2006) Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 26:7950–7961

    Article  CAS  PubMed  Google Scholar 

  • Rubas W, Superasxo A, Weder HG et al (1986) Treatment of murine L1210 lymphoid leukemia and melanoma B16 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int J Cancer 37:149–154

    Article  CAS  PubMed  Google Scholar 

  • Schieb H, Weidlich S, Schlechtingen G et al (2010) Structural design, solid-phase synthesis and activity of membrane-anchored b-secretase inhibitors on Ab generation from wild-type and Swedish mutant APP. Chem Eur J 16:14412–14423

    Article  CAS  PubMed  Google Scholar 

  • Schroeder H, Leventis R, Shahinian S et al (1996) Lipid-modified, cysteinyl-containing peptides of diverse structures are efficiently S-acylated at the plasma membrane of mammalian cells. J Cell Sci 134:647–660

    Article  CAS  Google Scholar 

  • Sevigny LM, Zhang P, Bohm A et al (2011) Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Pro Natl Acad Sci USA 108:8491–8496

    Article  CAS  Google Scholar 

  • Silvius JR (2002) Lipidated peptides as tools for understanding the membrane interactions of lipid-modified proteins. Curr Topics Membr 52:371–395

    Article  CAS  Google Scholar 

  • Tchernychev B, Ren Y, Sachdev P et al (2010) Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Pro Natl Acad Sci USA 107:22255–22259

    Article  CAS  Google Scholar 

  • Timofeeva OA, Gaponenko V, Kockett SJ et al (2007) Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem Biol 2:799–809

    Article  CAS  PubMed  Google Scholar 

  • Tobinaga K, Li C, Takeo M et al (2014) Rapid and serum-insensitive endocytotic delivery of proteins using biotinylated polymers attached via multivalent hydrophobic anchors. J Controlled Release (in press)

    Google Scholar 

  • Tressel SL, Koukos G, Tchernychev B et al (2011) Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Method Mol Biol 683:259–275

    Article  CAS  Google Scholar 

  • Valente P, Fernandez-Carvajal A, Camprubi-Robles M et al (2011) Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB J 25:1628–1640

    Article  CAS  PubMed  Google Scholar 

  • Varner AS, Ducker CE, Xia Z et al (2003) Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs. Biochem J 373:91–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang TY, Leventis R, Silvius JR (2001) Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 40:13031–13040

    Article  CAS  PubMed  Google Scholar 

  • Wang TY, Leventis R, Silvius JR (2005) Artificially lipid-anchored proteins can elicit clustering-induced intracellular signaling events in Jurkat T-lymphocytes independent of lipid raft association. J Biol Chem 280:22839–22846

    Article  CAS  PubMed  Google Scholar 

  • Wielders SJ, Bennaghmouch A, Reutelingsperger CPM et al (2007) Anticoagulant and antithrombotic properties of intracellular protease activated receptor antagonists. J Thromb Haemost 5:571–576

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Boire A, Agrwal A et al (2009) Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 69:6223–6231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mori, T., Katayama, Y. (2014). Membrane-Domain-Selective Drug Targeting Based on Lipid Modification. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_11

Download citation

Publish with us

Policies and ethics