Skip to main content

Proprietary Nanofiber Technologies and Scale-Up

  • Chapter
  • First Online:
  • 1737 Accesses

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

Abstract

An overview of scalable methods for industrial production of nanofibers is given. The theoretical principles of both nozzle- and nozzle-less electrospinning processes are discussed. Productivity limits of electrospinning and competing/complementary technologies (nano-meltblown, force-spinning, islets-in-the sea), together with their predominant potential application areas, are described. Newest developments in production methods for nanofibers are introduced, e.g. nozzle-less co-axial electrospinning and single-nanofiber preparation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Φ:

Scalar velocity potential

p :

Hydrostatic pressure

ρ :

Liquid density

E 0 :

Electric field strength

γ :

Surface tension

ω :

Angular frequency

k :

Wave number

E c :

Critical electric field intensity

λ:

Spatial period (“wavelength”)

a :

Capillary length

References

  • Alargova RG, Bhatt KH, Paunov VN et al (2004) Scalable synthesis of a new class of polymer Microrods by a liquid–liquid dispersion technique. Adv Mater 16:1653

    Article  CAS  Google Scholar 

  • Azarbayjani AF, Venugopal JR, Ramakrishna S et al (2010) Smart polymeric nanofibers for topical delivery of levothyroxine. J Pharm Pharmaceut Sci 13(3):400–410

    CAS  Google Scholar 

  • Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70

    Article  CAS  Google Scholar 

  • Buzgo M, Jakubova R, Mickova A et al (2013) Time-regulated drug delivery system based on coaxially incorporated platelet α-granules for biomedical use. Nanomedicine 8(7):1137–1154. doi:10.2217/nnm.12.140

    Article  CAS  PubMed  Google Scholar 

  • Dauner M, Ullrich A, Reiter F (2008) Nanofibers by centrifuge spinning to improve filter media. In: Proceedings of 10th world filtration congress (WFC10), Leipzig, Germany, 14–18 Apr 2008

    Google Scholar 

  • Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151

    Article  CAS  Google Scholar 

  • Duchoslav J, Rubacek L (2008) Electrospun TiO2 fibers as a material for dye sensitized solar cells. In: Proceedings of nsti nanotech conference, Boston, MA 1–5 June 2008

    Google Scholar 

  • Elmarco (2013) Pictures available at www.elmarco.com

  • FibeRio (2013) Pictures available at www.fiberio.com

  • HILLS Inc (2011) Hills Nano Technology Brochure. West Melbourne, FL

    Google Scholar 

  • Hohman MM, Shin M, Rutledge GC et al (2001a) Electrospinning and electrically forced jets I. Stability theory. Phys Fluids 13:2201

    Article  CAS  Google Scholar 

  • Hohman MM, Shin M, Rutledge GC et al (2001b) Electrospinning and electrically forced jets II. Applications. Phys Fluids 13:2221

    Article  CAS  Google Scholar 

  • Jaroszczyk T, Petrik S, Donahue K (2009) The role of nanofiber filter media in motor vehicle air filtration. In: Proceedings of 4th biennial conference on emissions solutions in transportation, AFS, Ann Arbor, MI, 5–8 Oct 2009

    Google Scholar 

  • Jirsak O, Sanetrnik F, Lukas D, Kotek V et al (2005). A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method. The Patent Cooperation Treaty WO 2005/024101

    Google Scholar 

  • Kavan L, Grätzel M (2002) Facile synthesis of nanocrystalline Li4Ti5 O 12 (Spinel) exhibiting fast Li insertion. Electrochem Solid-State Lett 5:A39

    Article  CAS  Google Scholar 

  • Kenawy ER, Bowlin GL, Mansfield K et al (2002) Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  CAS  Google Scholar 

  • Kirichenko V, Filatov Y, Budyka A (2007) Electrospinning of micro-and nanofibers: fundamentals in separation and filtration processes. Begell House, USA

    Google Scholar 

  • Lukas D, Pokorny P, Sarkar A (2008) Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys 103:084309

    Article  Google Scholar 

  • Mickova A, Buzgo M, Benada O et al (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13(4):952–962. doi:10.1021/bm2018118

    Article  CAS  PubMed  Google Scholar 

  • NanoStatics (2007) Company brochure, available at www.nanostatics.com

  • NCSU (2013) Picture available at http://www.che.ncsu.edu/velevgroup/vitchuli.html

  • Petrik S, Maly M (2009) Production nozzle-less electrospinning nanofiber technology. Mater Res Soc Symp Proc 1240:1240-WW03-07

    Google Scholar 

  • Proceedings of Nanofibers for the 3rd Millenium—Nano for Life Conference (2009), Prague, 11–12 Mar 2009

    Google Scholar 

  • Ramakrishna S, Fujihara K, Teo W et al (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  • Reneker DH (2009) Personal communication

    Google Scholar 

  • Rubacek L, Duchoslav J (2008) Electrospun nanofiber layers for applications in electrochemical devices. In: Proceedings of NSTI nanotech conference, Boston, MA, 1–5 June 2008

    Google Scholar 

  • Shin YM, Hohman MM, Brenner MP et al (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78:1149

    Article  CAS  Google Scholar 

  • Thompson CJ, Chase GG, Yarin AL et al (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913

    Article  CAS  Google Scholar 

  • TOPTEC (2011). Company brochure, available at www.toptec.co.kr

  • Tsai CH, Mikes P, Andrukh T et al (2011) Nanoporous artificial proboscis for probing minute amount of liquids. Nanoscale 3:4685

    Article  CAS  PubMed  Google Scholar 

  • Vyslouzilova L, Vodsedalkova K, Pokorny P et al (2010) Needleless co-axial electrospinning. In: Proceedings of nanofibers for the 3rd millenium—nano for life conference, Raleigh, NC, 30 Aug–1 Sept 2010

    Google Scholar 

  • Williams GR, Chatterton NP, Nazir T, Yu D-G et al (2012) Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 3(4):515–533. doi:10.4155/tde.12.17

    Article  CAS  PubMed  Google Scholar 

  • Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789

    Article  CAS  Google Scholar 

  • Yu D-G, Zhu L-M, White K et al (2009) Electrospun nanofiber-based drug delivery systems. Health 1(2):67–75. doi:10.4236/health.2009.12012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Petrík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petrík, S. (2014). Proprietary Nanofiber Technologies and Scale-Up. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_1

Download citation

Publish with us

Policies and ethics