Skip to main content

Toward a Holistic Approach to Soils and Plant Growth

  • Chapter
  • First Online:
Interactions in Soil: Promoting Plant Growth

Part of the book series: Biodiversity, Community and Ecosystems ((BECO,volume 1))

Abstract

We propose that a holistic view be taken to the study and implementation of ecological research into soils, soil organisms and plant growth. This builds upon the spatial and temporal aspects of soil physical and biological characteristics at the micro- and macroaggregate scales. This has major implications for the interactions of the soil biota and also for the possibilities of soil organic matter (SOM) dynamics, including gradual accumulation of SOM across decades and centuries. One of the key integrating factors in the role of soil biota in plant nutrition is the centrality of detrital and soil food webs in fostering nutrient cycling and ecosystem stability. We conclude with a five-dimension approach to studying key factors in soil biological interactions that affect plant nutrition and also long-term carbon balance in natural and agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blagodatsky S, Smith P (2012) Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem 47:78–92

    Article  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258

    Article  CAS  Google Scholar 

  • Cheeke T, Coleman DC, Wall DH (eds) (2012) Microbial ecology in sustainable agroecosystems. CRC Press, Boca Raton

    Google Scholar 

  • Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163

    Article  CAS  Google Scholar 

  • Clarholm M (1985) Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes, and animals. Blackwell, Oxford, pp 355–365

    Google Scholar 

  • Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biol Biochem 40:271–289

    Article  CAS  Google Scholar 

  • Coleman DC (2011) Understanding soil processes: one of the last frontiers in biological and ecological research. Aust Plant Pathol 40:207–214

    Article  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Article  Google Scholar 

  • Coleman DC, Hendrix PF, Odum EP (1998) Ecosystem health: an overview. In: Wang PH (ed) Soil chemistry and ecosystem health, Soil Science Society American special publication no. 52. Soil Science Society of America, Madison, pp 1–20

    Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Coleman DC, Vadakattu G, Moore JC (2012) Soil ecology and agroecosystem studies: a dynamic world. In: Cheeke T, Coleman DC, Wall DH (eds) Microbial ecology in sustainable agroecosystems. CRC Press, Boca Raton, pp 1–21

    Chapter  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould, through the action of worms, with observations on their habits. John Murray, London

    Google Scholar 

  • de Ruiter PC, Neutel A-M, Moore JC (1996) Energetics and stability in belowground food webs. In: Polis A, Winemiller KO (eds) Food webs: integration of patterns and dynamics G. Chapman & Hall, New York, pp 201–210

    Chapter  Google Scholar 

  • de Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hassink J, Bloem J, De Vos J, Marinissen JCY, Didden WAM, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J Appl Ecol 30:95–106

    Article  Google Scholar 

  • de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, New York

    Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull (Copenhagen) 39:23–32

    Google Scholar 

  • Fu SL, Cabrera ML, Coleman DC, Kisselle KW, Garrett CJ, Hendrix PF, Crossley DA Jr (2000) Soil carbon dynamics of conventional tillage and no-till agroecosystems at Georgia Piedmont – HSB-C models. Ecol Model 131:229–248

    Article  Google Scholar 

  • Fu SL, Ferris H, Brown D, Plant R (2005) Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol Biochem 37:1979–1987

    Article  CAS  Google Scholar 

  • García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  Google Scholar 

  • Gijsman AJ, Hoogenboom G, Parton WJ, Kerridge PC (2002) Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agron J 94:462–474

    Article  Google Scholar 

  • Gupta VVSR, van Vliet PCJ, Abbott LK, Leonard E (1999) Farming system and soil biota in Western Australia. CRCSLM/CTT/2/99, Adelaide, South Australia, pp 4. ISBN-1 876162 31 7

    Google Scholar 

  • Hilbert DW, Swift DM, Detling JK, Dyer MI (1981) Relative growth-rates and the grazing optimization hypothesis. Oecologia 51:14–18

    Article  Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CCP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. In: Cold Spring Harbor symposium in quantitative biology, vol 22. Cold Spring, New York, pp 415–427

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Ingwersen J, Butterbach-Bahl K, Gasche R, Richter O, Papen H (1999) Barometric process separation: new method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci Soc Am J 63:117–128

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Jiao NZ, Zheng Q (2011) The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77:7439–7444

    Article  CAS  Google Scholar 

  • Kimura M, Jia Z-J, Nakayama N, Asakawa S (2008) Review—ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nutr 54:1–32

    Article  Google Scholar 

  • Lubbers IM et al (2013) Greenhouse gas emissions from soils increased by earthworms. Nat Clim Change 3:87–194

    Article  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hattenschwiler S, Van Ruijven J, Van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  Google Scholar 

  • Moore JC, De Ruiter PC (2012) Soil food webs in agricultural ecosystems. In: Cheeke T, Coleman DC, Wall DH (eds) Microbial ecology of sustainable agroecosystems. CRC Press, Boca Raton, pp 63–88

    Chapter  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Article  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro- and mesobiota in belowground food webs. Annu Rev Entomol 33:419–439

    Article  Google Scholar 

  • Moore JC, McCann K, Setälä H, de Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  • O’Brien SL, Jastrow JD (2013) Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol Biochem 61:1–13

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC et al (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–811

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31

    Article  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86:19–31

    Article  CAS  Google Scholar 

  • Stewart CE, Plante AF, Paustian K, Conant RT, Six J (2008) Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci Soc Am J 72:379–392

    Article  CAS  Google Scholar 

  • Van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss SY, Vos M, Wardle DA (2009) Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161:1–14

    Article  Google Scholar 

  • Wall DH, Moore JC (1999) Interactions underground: soil biodiversity, mutualism, and ecosystem processes. Bioscience 49:109–117

    Article  Google Scholar 

  • Wall DH, Bradford MA, St John MG et al (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677

    Google Scholar 

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic, London

    Google Scholar 

  • Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303–306

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Perspective. Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583

    Article  CAS  Google Scholar 

  • Wu J, Liu Z, Wang X, Sun Y, Zhou L, Lin Y, Fu S (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Funct Ecol 25:921–931

    Article  Google Scholar 

  • Yi W, Fu S, Zhou C, Ding M (1995) A study on soil microbial biomass in artificial and natural forests. Acta Ecol Sin 15(Supp A):141–146 (in Chinese)

    Google Scholar 

  • Yin H, Li Y, Xiao J, Xu Z, Cheng X, Liu Q (2013) Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob Change Biol 19:2158–2167

    Article  Google Scholar 

  • Yoo G, Yang X, Wander MM (2011) Influence of soil aggregation on SOC sequestration: a preliminary model of SOC protection by aggregate dynamics. Ecol Eng 37:87–495

    Article  Google Scholar 

  • Zhang W, Hendrix PF, Dame LE, Burke RA, Wu J, Neher DA, Li J, Shao Y, Fu S (2013) Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nat Commun 4:2576

    Google Scholar 

  • Zhao J, Wang X, Shao Y, Xu G, Fu S (2011) Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43:954–960

    Article  CAS  Google Scholar 

  • Zhao J, Wan S, Fu S, Wang X, Wang M, Liang C, Chen Y, Zhu X (2013) Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecol Manag 310:80–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coleman, D.C., Zhang, W., Fu, S. (2014). Toward a Holistic Approach to Soils and Plant Growth. In: Dighton, J., Krumins, J. (eds) Interactions in Soil: Promoting Plant Growth. Biodiversity, Community and Ecosystems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8890-8_11

Download citation

Publish with us

Policies and ethics