Skip to main content

Membrane Interactions and Cellular Effects of MACPF/CDC Proteins

  • Chapter
  • First Online:
MACPF/CDC Proteins - Agents of Defence, Attack and Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependant cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid

CDC:

Cholesterol-dependent cytolysin

LLO:

Listeriolysin O

MAC:

Membrane attack complex

PFN:

Perforin

PFO:

Perfringolysin O

PFP:

Pore-forming proteins

PFT:

Pore-forming toxin

TgPLP1:

Toxoplasma gondii perforin-like protein 1

PLY:

Pneumolysin

SLO:

Streptolysin O

References

  1. Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    CAS  PubMed  Google Scholar 

  2. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Tegla CA, Cudrici C, Patel S, Trippe R 3rd, Rus V, Niculescu F, Rus H (2011) Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 51:45–60

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    CAS  PubMed  Google Scholar 

  6. Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10:57–61

    CAS  PubMed  Google Scholar 

  7. Knapp O, Stiles BG, Popoff MR (2010) The aerolysin-like toxin family of cytolytic, pore-forming toxins. Open Toxinol J 3:53–68

    CAS  Google Scholar 

  8. Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142

    CAS  PubMed  Google Scholar 

  9. Anderluh G, Maček P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124

    CAS  PubMed  Google Scholar 

  10. Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    CAS  PubMed  Google Scholar 

  11. Istivan TS, Coloe PJ (2006) Phospholipase A in gram-negative bacteria and its role in pathogenesis. Microbiology 152:1263–1274

    CAS  PubMed  Google Scholar 

  12. Shimuta K, Ohnishi M, Iyoda S, Gotoh N, Koizumi N, Watanabe H (2009) The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol 9:261

    Google Scholar 

  13. Caulier G, Van Dyck S, Gerbaux P, Eeckhaut I, Flammang P (2011) Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche Mer Inf Bull 31:48–54

    Google Scholar 

  14. Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9:425–474

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Dufton MJ, Hider RC (1991) The structure and pharmacology of elapid cytotoxins. In: Harvey AL (ed) Snake toxins. Pergamon Press, New York, pp 259–302

    Google Scholar 

  16. Wu WG, Tjong SC, Wu PL, Kuo JH, Wu K (2010) Role of heparan sulfates and glycosphingolipids in the pore formation of basic polypeptides of cobra cardiotoxin. Adv Exp Med Biol 677:143–149

    CAS  PubMed  Google Scholar 

  17. Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33:482–490

    CAS  PubMed  Google Scholar 

  18. Bischofberger M, Iacovache I, van der Goot FG (2012) Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12:266–275

    CAS  PubMed  Google Scholar 

  19. Gouaux E (1997) Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 7:566–573

    CAS  PubMed  Google Scholar 

  20. Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bakrač B, Gutierrez-Aguirre I, Podlesek Z, Sonnen AF, Gilbert RJ, Maček P, Lakey JH, Anderluh G (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283:18665–18677

    PubMed  Google Scholar 

  22. De Colibus L, Sonnen AF, Morris KJ, Siebert CA, Abrusci P, Plitzko J, Hodnik V, Leippe M, Volpi E, Anderluh G, Gilbert RJ (2012) Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20:1498–1507

    PubMed Central  PubMed  Google Scholar 

  23. Yamaji A, Sekizawa Y, Emoto K, Sakuraba H, Inoue K, Kobayashi H, Umeda M (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 273:5300–5306

    CAS  PubMed  Google Scholar 

  24. Abrami L, Fivaz M, Glauser PE, Parton RG, van der Goot FG (1998) A pore-forming toxin interacts with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J Cell Biol 140:525–540

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    CAS  PubMed  Google Scholar 

  26. Alving CR, Habig WH, Urban KA, Hardegree MC (1979) Cholesterol-dependent tetanolysin damage to liposomes. Biochim Biophys Acta 551:224–228

    CAS  PubMed  Google Scholar 

  27. Rosenqvist E, Michaelsen TE, Vistnes AI (1980) Effect of streptolysin O and digitonin on egg lecithin/cholesterol vesicles. Biochim Biophys Acta 600:91–102

    CAS  PubMed  Google Scholar 

  28. Bavdek A, Gekara NO, Priselac D, Gutierrez Aguirre I, Darji A, Chakraborty T, Maček P, Lakey JH, Weiss S, Anderluh G (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Biochemistry 46:4425–4437

    CAS  PubMed  Google Scholar 

  29. Heuck AP, Hotze EM, Tweten RK, Johnson AE (2000) Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242

    CAS  PubMed  Google Scholar 

  30. Ohno-Iwashita Y, Iwamoto M, Ando S, Iwashita S (1992) Effect of lipidic factors on membrane cholesterol topology–mode of binding of theta-toxin to cholesterol in liposomes. Biochim Biophys Acta 1109:81–90

    CAS  PubMed  Google Scholar 

  31. Flanagan JJ, Tweten RK, Johnson AE, Heuck AP (2009) Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48:3977–3987

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Moe PC, Heuck AP (2010) Phospholipid hydrolysis caused by Clostridium perfringens alpha-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Biochemistry 49:9498–9507

    Google Scholar 

  33. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP (2012) Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry 51:3373–3382

    CAS  PubMed  Google Scholar 

  35. Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA 104:20226–20231

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ohno-Iwashita Y, Shimada Y, Waheed AA, Hayashi M, Inomata M, Nakamura M, Maruya M, Iwashita S (2004) Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10:125–134

    CAS  PubMed  Google Scholar 

  37. Pocognoni CA, De Blas GA, Heuck AP, Belmonte SA, Mayorga LS (2013) Perfringolysin O as a useful tool to study human sperm physiology. Fertil Steril 99:99–106

    CAS  PubMed  Google Scholar 

  38. Waheed AA, Shimada Y, Heijnen HFG, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y (2001) Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci USA 98:4926–4931

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Praper T, Beseničar MP, Istinič H, Podlesek Z, Metkar SS, Froelich CJ, Anderluh G (2010) Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol Immunol 47:2492–2504

    CAS  PubMed  Google Scholar 

  40. Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ, Trapani JA (2005) Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 280:8426–8434

    CAS  PubMed  Google Scholar 

  41. Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Kunzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P (2013) Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 95:1855–1864

    CAS  PubMed  Google Scholar 

  42. Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982

    Google Scholar 

  43. Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kafsack BF, Carruthers VB (2010) Apicomplexan perforin-like proteins. Commun Integr Biol 3:18–23

    PubMed Central  PubMed  Google Scholar 

  45. Roiko MS, Carruthers VB (2013) Functional dissection of toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress. J Biol Chem 288:8712–8725

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ponting CP (1999) Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 9:R911–R913

    CAS  PubMed  Google Scholar 

  47. Taylor LD, Nelson DE, Dorward DW, Whitmire WM, Caldwell HD (2010) Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 78:2691–2699

    Google Scholar 

  48. Iacovache I, Bischofberger M, van der Goot FG (2010) Structure and assembly of pore-forming proteins. Curr Opin Struct Biol 20:241–246

    CAS  PubMed  Google Scholar 

  49. Belmonte G, Pederzolli C, Maček P, Menestrina G (1993) Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J Membr Biol 131:11–22

    CAS  PubMed  Google Scholar 

  50. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    CAS  PubMed  Google Scholar 

  51. Comai M, Dalla Serra M, Coraiola M, Werner S, Colin DA, Monteil H, Prevost G, Menestrina G (2002) Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes. Mol Microbiol 44:1251–1267

    CAS  PubMed  Google Scholar 

  52. Sugawara-Tomita N, Tomita T, Kamio Y (2002) Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184:4747–4756

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Eifler N, Vetsch M, Gregorini M, Ringler P, Chami M, Philippsen A, Fritz A, Muller SA, Glockshuber R, Engel A, Grauschopf U (2006) Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J 25:2652–2661

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459:726–730

    CAS  PubMed  Google Scholar 

  56. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    CAS  PubMed  Google Scholar 

  57. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    CAS  PubMed  Google Scholar 

  58. Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287:10210–10222

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834

    CAS  PubMed  Google Scholar 

  61. Sepčić K, Berne S, Potrich C, Turk T, Maček P, Menestrina G (2003) Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem 270:1199–1210

    PubMed  Google Scholar 

  62. Bischofberger M, Gonzalez MR, van der Goot FG (2009) Membrane injury by pore-forming proteins. Curr Opin Cell Biol 21:589–595

    CAS  PubMed  Google Scholar 

  63. Gonzalez MR, Bischofberger M, Freche B, Ho S, Parton RG, van der Goot FG (2011) Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol 13:1026–1043

    CAS  PubMed  Google Scholar 

  64. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G (2013) What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 182:64–70

    CAS  PubMed  Google Scholar 

  66. Anderluh G, Dalla Serra M, Viero G, Guella G, Maček P, Menestrina G (2003) Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 278:45216–45223

    CAS  PubMed  Google Scholar 

  67. Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G (2001) Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 80:2761–2774

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA (2004) Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 576:205–210

    CAS  PubMed  Google Scholar 

  69. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA (2006) Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 281:14408–14416

    CAS  PubMed  Google Scholar 

  70. Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365

    CAS  PubMed  Google Scholar 

  71. Bleicken S, Landeta O, Landajuela A, Basanez G, Garcia-Saez AJ (2013) Proapoptotic bax and bak proteins form stable protein-permeable pores of tunable size. J Biol Chem 288:33241–33252

    CAS  PubMed  Google Scholar 

  72. Epand RF, Martinou JC, Montessuit S, Epand RM, Yip CM (2002) Direct evidence for membrane pore formation by the apoptotic protein bax. Biochem Biophys Res Commun 298:744–749

    CAS  PubMed  Google Scholar 

  73. Qian S, Wang W, Yang L, Huang HW (2008) Structure of transmembrane pore induced by bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci USA 105:17379–17383

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D (2013) Three-dimensional structure of bax-mediated pores in membrane bilayers. Cell Death Dis 4:e683

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of bax and bak activation and action. Biochim Biophys Acta 1813:521–531

    CAS  PubMed  Google Scholar 

  76. Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J, Froelich CJ (2011) Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS One 6:e24286

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354

    CAS  PubMed  Google Scholar 

  78. Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8:781–792

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12:11–18

    CAS  PubMed  Google Scholar 

  81. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    CAS  PubMed  Google Scholar 

  82. Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    PubMed  Google Scholar 

  83. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    CAS  PubMed  Google Scholar 

  85. Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108:21016–21021

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, Lieberman J (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 12:770–777

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Bonev BB, Gilbert RJ, Andrew PW, Byron O, Watts A (2001) Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem 276:5714–5719

    CAS  PubMed  Google Scholar 

  88. Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20:360–368

    CAS  PubMed  Google Scholar 

  89. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200:1647–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, Paton JC, Wessels MR, Golenbock DT, Malley R (2005) The apoptotic response to pneumolysin is toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73:6479–6487

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

    CAS  PubMed  Google Scholar 

  93. Gekara NO, Weiss S (2004) Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Trans 32:712–714

    CAS  PubMed  Google Scholar 

  94. Hamon MA, Batsche E, Regnault B, Tham TN, Seveau S, Muchardt C, Cossart P (2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci USA 104:13467–13472

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hamon MA, Cossart P (2011) K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect Immun 79:2839–2846

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Walev I, Bhakdi SC, Hofmann F, Djonder N, Valeva A, Aktories K, Bhakdi S (2001) Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc Natl Acad Sci USA 98:3185–3190

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kennedy CL, Smith DJ, Lyras D, Chakravorty A, Rood JI (2009) Programmed cellular necrosis mediated by the pore-forming alpha-toxin from Clostridium septicum. PLoS Pathog 5:e1000516

    PubMed Central  PubMed  Google Scholar 

  99. Nelson KL, Brodsky RA, Buckley JT (1999) Channels formed by sub-nanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. Cell Microbiol 1:69–74

    CAS  PubMed  Google Scholar 

  100. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180:905–914

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262

    CAS  PubMed  Google Scholar 

  102. Dramsi S, Cossart P (2003) Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 71:3614–3618

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, Seveau S (2011) The pore-forming toxin listeriolysin O mediates a novel entry pathway of Listeria monocytogenes into human hepatocytes. PLoS Pathog 7:e1002356

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Gekara NO, Groebe L, Viegas N, Weiss S (2008) Listeria monocytogenes desensitizes immune cells to subsequent Ca2+ signaling via listeriolysin O-induced depletion of intracellular Ca2+ stores. Infect Immun 76:857–862

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Fickl H, Cockeran R, Steel HC, Feldman C, Cowan G, Mitchell TJ, Anderson R (2005) Pneumolysin-mediated activation of NFkappaB in human neutrophils is antagonized by docosahexaenoic acid. Clin Exp Immunol 140:274–281

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Aguilar JL, Kulkarni R, Randis TM, Soman S, Kikuchi A, Yin Y, Ratner AJ (2009) Phosphatase-dependent regulation of epithelial mitogen-activated protein kinase responses to toxin-induced membrane pores. PLoS One 4:e8076

    PubMed Central  PubMed  Google Scholar 

  107. Aoudjit L, Stanciu M, Li H, Lemay S, Takano T (2003) p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. Am J Physiol Ren Physiol 285:F765–F774

    CAS  Google Scholar 

  108. Gancz D, Donin N, Fishelson Z (2009) Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol 47:310–317

    CAS  PubMed  Google Scholar 

  109. Kloft N, Busch T, Neukirch C, Weis S, Boukhallouk F, Bobkiewicz W, Cibis I, Bhakdi S, Husmann M (2009) Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem Biophys Res Comm 385:503–506

    CAS  PubMed  Google Scholar 

  110. Niculescu F, Badea T, Rus H (1999) Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis 142:47–56

    CAS  PubMed  Google Scholar 

  111. Peng H, Takano T, Papillon J, Bijian K, Khadir A, Cybulsky AV (2002) Complement activates the c-Jun N-terminal kinase/stress-activated protein kinase in glomerular epithelial cells. J Immunol 169:2594–2601

    CAS  PubMed  Google Scholar 

  112. Ratner AJ, Hippe KR, Aguilar JL, Bender MH, Nelson AL, Weiser JN (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 281:12994–12998

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Rus H, Niculescu F, Badea T, Shin ML (1997) Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacology 38:177–187

    CAS  PubMed  Google Scholar 

  114. Chu J, Thomas LM, Watkins SC, Franchi L, Nunez G, Salter RD (2009) Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol 86:1227–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Houldsworth S, Andrew PW, Mitchell TJ (1994) Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear phagocytes. Infect Immun 62:1501–1503

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Kayal S, Lilienbaum A, Join-Lambert O, Li X, Israel A, Berche P (2002) Listeriolysin O secreted by Listeria monocytogenes induces NF-kappaB signalling by activating the IkappaB kinase complex. Mol Microbiol 44:1407–1419

    CAS  PubMed  Google Scholar 

  117. Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, Cohen H, Ward PA, Friedl HP, Warren JS (1997) Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol 150:2019–2031

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Meixenberger K, Pache F, Eitel J, Schmeck B, Hippenstiel S, Slevogt H, N’Guessan P, Witzenrath M, Netea MG, Chakraborty T, Suttorp N, Opitz B (2010) Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol 184:922–930

    CAS  PubMed  Google Scholar 

  119. Nishibori T, Xiong H, Kawamura I, Arakawa M, Mitsuyama M (1996) Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells. Infect Immun 64:3188–3195

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tsuchiya K, Kawamura I, Takahashi A, Nomura T, Kohda C, Mitsuyama M (2005) Listeriolysin O-induced membrane permeation mediates persistent interleukin-6 production in Caco-2 cells during Listeria monocytogenes infection in vitro. Infect Immun 73:3869–3877

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Viedt C, Hansch GM, Brandes RP, Kubler W, Kreuzer J (2000) The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. FASEB J 14:2370–2372

    CAS  PubMed  Google Scholar 

  122. Walev I, Hombach M, Bobkiewicz W, Fenske D, Bhakdi S, Husmann M (2002) Resealing of large transmembrane pores produced by streptolysin O in nucleated cells is accompanied by NF-kappaB activation and downstream events. FASEB J 16:237–239

    CAS  PubMed  Google Scholar 

  123. Kraus S, Seger R, Fishelson Z (2001) Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis. Clin Exp Immunol 123:366–374

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Corrotte M, Fernandes MC, Tam C, Andrews NW (2012) Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 13:483–494

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lopez JA, Susanto O, Jenkins MR, Lukoyanova N, Sutton VR, Law RH, Johnston A, Bird CH, Bird PI, Whisstock JC, Trapani JA, Saibil HR, Voskoboinik I (2013) Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121:2659–2668

    CAS  PubMed  Google Scholar 

  126. Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138:246–253

    CAS  PubMed  Google Scholar 

  127. Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115:1582–1593

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370

    CAS  PubMed  Google Scholar 

  129. Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370

    CAS  PubMed  Google Scholar 

  130. Cassidy SK, Hagar JA, Kanneganti TD, Franchi L, Nunez G, O’Riordan MX (2012) Membrane damage during Listeria monocytogenes infection triggers a caspase-7 dependent cytoprotective response. PLoS Pathog 8:e1002628

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ (2000) Complement mediated cell death is associated with DNA fragmentation. Cell Death Diff 7:48–58

    CAS  Google Scholar 

  132. Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML (1991) Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol 147:212–217

    CAS  PubMed  Google Scholar 

  133. Cudrici C, Niculescu F, Jensen T, Zafranskaia E, Fosbrink M, Rus V, Shin ML, Rus H (2006) C5b-9 terminal complex protects oligodendrocytes from apoptotic cell death by inhibiting caspase-8 processing and up-regulating FLIP. J Immunol 176:3173–3180

    CAS  PubMed  Google Scholar 

  134. Rus HG, Niculescu F, Shin ML (1996) Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol 156:4892–4900

    CAS  PubMed  Google Scholar 

  135. Rus HG, Niculescu FI, Shin ML (2001) Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev 180:49–55

    CAS  PubMed  Google Scholar 

  136. Soane L, Rus H, Niculescu F, Shin ML (1999) Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation. J Immunol 163:6132–6138

    CAS  PubMed  Google Scholar 

  137. Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, Heuser JE (2011) Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci 124:2414–2423

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274:381–386

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282:29977–29986

    CAS  PubMed  Google Scholar 

  140. Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A, Cossart P (2010) Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464:1192–1195

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Kloft N, Neukirch C, Bobkiewicz W, Veerachato G, Busch T, von Hoven G, Boller K, Husmann M (2010) Pro-autophagic signal induction by bacterial pore-forming toxins. Med Microbiol Immunol 199:299–309

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Bucker R, Krug SM, Rosenthal R, Gunzel D, Fromm A, Zeitz M, Chakraborty T, Fromm M, Epple HJ, Schulzke JD (2011) Aerolysin from Aeromonas hydrophila perturbs tight junction integrity and cell lesion repair in intestinal epithelial HT-29/B6 cells. J Infect Dis 204:1283–1292

    PubMed  Google Scholar 

  143. Dragneva Y, Anuradha CD, Valeva A, Hoffmann A, Bhakdi S, Husmann M (2001) Subcytocidal attack by staphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8 production. Infect Immun 69:2630–2635

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    CAS  PubMed  Google Scholar 

  145. Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, Bocco JL, Colombo MI (2007) Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci USA 104:1829–1834

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, Neukirch C, Bayley H, Bhakdi S (2009) Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett 583:337–344

    CAS  PubMed  Google Scholar 

  147. Garcia-Saez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 286:37768–37777

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Degiacomi MT, Iacovache I, Pernot L, Chami M, Kudryashev M, Stahlberg H, van der Goot FG, Dal Peraro M (2013) Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat Chem Biol 9:623–629

    CAS  PubMed  Google Scholar 

  149. Carney DF, Hammer CH, Shin ML (1986) Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J Immunol 137:263–270

    CAS  PubMed  Google Scholar 

  150. Olofsson A, Hebert H, Thelestam M (1993) The projection structure of perfringolysin O (Clostridium perfringens θ-toxin). FEBS Lett 319:125–127

    CAS  PubMed  Google Scholar 

  151. Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D (2012) PROSO II–a new method for protein solubility prediction. FEBS J 279:2192–2200

    CAS  PubMed  Google Scholar 

  152. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, Moran B, Fitzgerald KA, Tschopp J, Petrilli V, Andrew PW, Kadioglu A, Lavelle EC (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6:e1001191

    PubMed Central  PubMed  Google Scholar 

  153. Pillich H, Loose M, Zimmer KP, Chakraborty T (2012) Activation of the unfolded protein response by Listeria monocytogenes. Cell Microbiol 14:949–964

    CAS  PubMed  Google Scholar 

  154. Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH (2011) Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe 10:627–634

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Richter JF, Gitter AH, Gunzel D, Weiss S, Mohamed W, Chakraborty T, Fromm M, Schulzke JD (2009) Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. Am J Physiol Gastrointest Liver Physiol 296:G1350–G1359

    CAS  PubMed  Google Scholar 

  156. Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69:845–852

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Lucas R, Yang G, Gorshkov BA, Zemskov EA, Sridhar S, Umapathy NS, Jezierska-Drutel A, Alieva IB, Leustik M et al (2012) Protein kinase C-alpha and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability. Am J Respir Cell Mol Biol 47:445–453

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P (2011) Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci USA 108:3612–3617

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Braun JS, Hoffmann O, Schickhaus M, Freyer D, Dagand E, Bermpohl D, Mitchell TJ, Bechmann I, Weber JR (2007) Pneumolysin causes neuronal cell death through mitochondrial damage. Infect Immun 75:4245–4254

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Braun JS, Novak R, Gao G, Murray PJ, Shenep JL (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67:3750–3756

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, Weber JR (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109:19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Carrero JA, Calderon B, Unanue ER (2004) Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 172:4866–4874

    CAS  PubMed  Google Scholar 

  163. Steinfort C, Wilson R, Mitchell T, Feldman C, Rutman A, Todd H, Sykes D, Walker J, Saunders K, Andrew PW et al (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect Immun 57:2006–2013

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Rayner CF, Jackson AD, Rutman A, Dewar A, Mitchell TJ, Andrew PW, Cole PJ, Wilson R (1995) Interaction of pneumolysin-sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect Immun 63:442–447

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Walev I, Vollmer P, Palmer M, Bhakdi S, Rose-John S (1996) Pore-forming toxins trigger shedding of receptors for interleukin 6 and lipopolysaccharide. Proc Natl Acad Sci USA 93:7882–7887

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Slovenian Research Agency for a financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Anderluh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cajnko, M.M., Mikelj, M., Turk, T., Podobnik, M., Anderluh, G. (2014). Membrane Interactions and Cellular Effects of MACPF/CDC Proteins. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_7

Download citation

Publish with us

Policies and ethics