Skip to main content

Perfringolysin O Structure and Mechanism of Pore Formation as a Paradigm for Cholesterol-Dependent Cytolysins

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

Cholesterol-dependent cytolysins (CDCs) constitute a family of pore forming toxins secreted by Gram-positive bacteria. These toxins form transmembrane pores by inserting a large β-barrel into cholesterol-containing membrane bilayers. Binding of water-soluble CDCs to the membrane triggers the formation of oligomers containing 35–50 monomers. The coordinated insertion of more than seventy β-hairpins into the membrane requires multiple structural conformational changes. Perfringolysin O (PFO), secreted by Clostridium perfringens, has become the prototype for the CDCs. In this chapter, we will describe current knowledge on the mechanism of PFO cytolysis, with special focus on cholesterol recognition, oligomerization, and the conformational changes involved in pore formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CDCs:

Cholesterol-dependent cytolysins

D1, D2, D3, and D4:

Domain 1, domain 2, domain 3, and domain 4

L1, L2, and L3:

Loop 1, loop 2, and loop 3

PFO:

Perfringolysin O

TMH1 and TMH2:

Transmembrane hairpin 1 and transmembrane hairpin 2

References

  1. Alving CR, Habig WH, Urban KA, Hardegree MC (1979) Cholesterol-dependent tetanolysin damage to liposomes. Biochim Biophys Acta 551:224–228

    Article  CAS  PubMed  Google Scholar 

  2. Bach D, Wachtel E (2003) Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim Biophys Acta 1610:187–197

    Article  CAS  PubMed  Google Scholar 

  3. Bavdek A, Gekara NO, Priselac D, Gutierrez Aguirre I, Darji A, Chakraborty T, Macek P, Lakey JH, Weiss S, Anderluh G (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of listeriolysin O. Biochemistry 46:4425–4437

    Google Scholar 

  4. Billington SJ, Songer JG, Jost BH (2002) The variant undecapeptide sequence of the Arcanobacterium pyogenes haemolysin, pyolysin, is required for full cytolytic activity. Microbiology 148:3947–3954

    CAS  PubMed  Google Scholar 

  5. Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang W-J (2009) Cellular functions and x-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151

    Article  CAS  PubMed  Google Scholar 

  7. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dang TX, Hotze EM, Rouiller I, Tweten RK, Wilson-Kubalek EM (2005) Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy. J Struct Biol 150:100–108

    Article  CAS  PubMed  Google Scholar 

  9. Das A, Goldstein JL, Anderson DD, Brown MS, Radhakrishnan A (2013) Use of mutant 125I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc Natl Acad Sci USA 110:10580–10585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, Petrosyan S, Loviscach M, Wall EA, Yadava N, Heuck AP, Ferrick DA, Henry RR, McDonald WG, Colca JR, Simon MI, Ciaraldi TP, Murphy AN (2013) Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA 110:5422–5427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dowd KJ, Tweten RK (2012) The cholesterol-dependent Cytolysin Signature Motif: a critical element in the Allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 8:e1002787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Flanagan JJ, Heuck AP, Johnson AE (2002) Cholesterol-Phospholipid interactions play an important role in Perfringolysin O binding to membrane. FASEB J 16:A929

    Google Scholar 

  15. Flanagan JJ, Tweten RK, Johnson AE, Heuck AP (2009) Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48:3977–3987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Giddings KS, Johnson AE, Tweten RK (2003) Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci USA 100:11315–11320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert RJC, Rossjohn J, Parker MW, Tweten RK, Morgan PJ, Mitchell TJ, Errington N, Rowe AJ, Andrew PW, Byron O (1998) Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. J Mol Biol 284:1223–1237

    Article  CAS  PubMed  Google Scholar 

  21. Hadders MA, Beringer DX, Gros P (2007) Structure of C8 a-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  CAS  PubMed  Google Scholar 

  22. Heuck AP, Hotze EM, Tweten RK, Johnson AE (2000) Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242

    Article  CAS  PubMed  Google Scholar 

  23. Heuck AP, Johnson AE (2002) Pore-forming protein structure analysis in membranes using multiple independent fluorescence techniques. Cell Biochem Biophys 36:89–101

    Article  CAS  PubMed  Google Scholar 

  24. Heuck AP, Johnson AE (2005) Membrane recognition and pore formation by bacterial pore-forming Toxins. In: Tamm LK (ed) Protein-lipid interactions. From membrane domains to cellular networks. Wiley-VCH, Weinheim, pp 163–186

    Google Scholar 

  25. Heuck AP, Moe PC, Johnson BB (2010) The cholesterol-dependent cytolysins family of Gram-positive bacterial toxins. In: Harris JR (ed) Cholesterol binding proteins and cholesterol transport, Subcellular biochemistry, vol 51. Springer, The Netherlands pp 551–577

    Google Scholar 

  26. Heuck AP, Savva CG, Holzenburg A, Johnson AE (2007) Conformational changes that effect Oligomerization and initiate pore formation are triggered throughout Perfringolysin O upon binding to cholesterol. J Biol Chem 282:22629–22637

    Article  CAS  PubMed  Google Scholar 

  27. Heuck AP, Tweten RK, Johnson AE (2001) Beta-barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 40:9065–9073

    Article  CAS  PubMed  Google Scholar 

  28. Heuck AP, Tweten RK, Johnson AE (2003) Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J Biol Chem 278:31218–31225

    Article  CAS  PubMed  Google Scholar 

  29. Hotze EM, Le HM, Sieber JR, Bruxvoort C, McInerney MJ, Tweten RK (2013) Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect Immun 81:216–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hotze EM, Wilson-Kubalek E, Farrand AJ, Bentsen L, Parker MW, Johnson AE, Tweten RK (2012) Monomer-Monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J Biol Chem 287:24534–24543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276:8261–8268

    Article  CAS  PubMed  Google Scholar 

  32. Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Johnson AE (2005) Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6:1078–1092

    Article  CAS  PubMed  Google Scholar 

  34. Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP (2012) Modifications in Perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry 51:3373–3382

    Article  CAS  PubMed  Google Scholar 

  35. Jost BH, Lucas E, Billington S, Ratner A, McGee D (2011) Arcanolysin is a cholesterol-dependent cytolysin of the human pathogen Arcanobacterium haemolyticum. BMC Microbiol 11:239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Korchev YE, Bashford CL, Pederzolli C, Pasternak CA, Morgan PJ, Andrew PW, Mitchell TJ (1998) A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed pneumolysin in cells and planar lipid bilayers. Biochem J 329:571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lange Y, Steck TL (2008) Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res 47:319–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lange Y, Ye J, Steck TL (2005) Activation of membrane cholesterol by displacement from phospholipids. J Biol Chem 280:36126–36131

    Article  CAS  PubMed  Google Scholar 

  39. Lin Q, London E (2013) Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein Perfringolysin O. J Biol Chem 288:1340–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mason PR, Tulenko TN, Jacob RF (2003) Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim Biophys Acta 1610:198–207

    Article  Google Scholar 

  41. McConnell HM, Radhakrishnan A (2003) Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta 1610:159–173

    Article  CAS  PubMed  Google Scholar 

  42. Mesmin B, Maxfield FR (2009) Intracellular sterol dynamics. Biochim Biophys Acta 1791:636–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Michel E, Reich KA, Favier R, Berche P, Cossart P (1990) Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol 4:2167–2178

    Article  CAS  PubMed  Google Scholar 

  44. Moe PC, Heuck AP (2010) Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Biochemistry 49:9498–9507

    Article  CAS  PubMed  Google Scholar 

  45. Nelson LD, Chiantia S, London E (2010) Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 99:3255–3263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nelson LD, Johnson AE, London E (2008) How interaction of Perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of Perfringolysin O-lipid raft interaction. J Biol Chem 283:4632–4642

    Article  CAS  PubMed  Google Scholar 

  47. Ohno-Iwashita Y, Iwamoto M, Ando S, Iwashita S (1992) Effect of lipidic factors on membrane cholesterol topology—mode of binding of θ-toxin to cholesterol in liposomes. Biochim Biophys Acta 1109:81–90

    Article  CAS  PubMed  Google Scholar 

  48. Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M (2010) Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization In: Harris JR (ed) Cholesterol binding and cholesterol transport proteins. Subcellular Biochemistry. vol 51, Springer, The Netherlands pp 597–621

    Google Scholar 

  49. Ohno-Iwashita Y, Shimada Y, Waheed A, Hayashi M, Inomata M, Nakamura M, Maruya M, Iwashita M (2004) Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10:125–134

    Article  CAS  PubMed  Google Scholar 

  50. Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  Google Scholar 

  51. Olofsson A, Hebert H, Thelestam M (1993) The projection structure of Perfringolysin O (Clostridium perfringens θ-toxin). FEBS Lett 319:125–127

    Article  CAS  PubMed  Google Scholar 

  52. Olsen BN, Bielska AA, Lee T, Daily MD, Covey DF, Schlesinger PH, Baker NA, Ory DS (2013) The structural basis of cholesterol accessibility in membranes. Biophys J 105:1838–1847

    Article  CAS  PubMed  Google Scholar 

  53. Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Palmer M, Valeva A, Kehoe M, Bhakdi S (1995) Kinetics of Streptolysin O self-assembly. Eur J Biochem 231:388–395

    Article  CAS  PubMed  Google Scholar 

  55. Pinkney M, Beachey E, Kehoe M (1989) The thiol-activated toxin streptolysin O does not require a thiol group for cytolytic activity. Infect Immun 57:2553–2558

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Pocognoni CA, De Blas GA, Heuck AP, Belmonte SA, Mayorga LS (2013) Perfringolysin O as a useful tool to study human sperm physiology. Fertil Steril 99(99–106):e102

    Google Scholar 

  57. Polekhina G, Feil SC, Tang J, Rossjohn J, Giddings KS, Tweten RK, Parker MW (2006) Comparative three-dimensional structure of cholesterol-dependent cytolysins. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 3rd edn. Academic Press, Oxford, England, pp 659–670

    Google Scholar 

  58. Polekhina G, Giddings KS, Tweten RK, Parker MW (2005) Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci USA 102:600–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJC (2010) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955

    Google Scholar 

  60. Radhakrishnan A, McConnell HM (2000) Chemical activity of cholesterol in membranes. Biochemistry 39:8119–8124

    Article  CAS  PubMed  Google Scholar 

  61. Ramachandran R, Heuck AP, Tweten RK, Johnson AE (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Mol Biol 9:823–827

    CAS  Google Scholar 

  62. Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 11:697–705

    Article  CAS  PubMed  Google Scholar 

  63. Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci USA 102:7139–7144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Rampersaud R, Planet PJ, Randis TM, Kulkarni R, Aguilar JL, Lehrer RI, Ratner AJ (2011) Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol 193:1034–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Reid PC, Sakashita N, Sugii S, Ohno-Iwashita Y, Shimada Y, Hickey WF, Chang T-Y (2004) A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J Lipid Res 45:582–591

    Article  CAS  PubMed  Google Scholar 

  66. Rosado CJ, Buckle AM, Law RHP, Butcher RE, Kan W-T, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  CAS  PubMed  Google Scholar 

  67. Rosenqvist E, Michaelsen TE, Vistnes AI (1980) Effect of streptolysin O and digitonin on egg lecithin/cholesterol vesicles. Biochim Biophys Acta 600:91–102

    Article  CAS  PubMed  Google Scholar 

  68. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  CAS  PubMed  Google Scholar 

  69. Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW (2007) Structures of Perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367:1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sato TK, Tweten RK, Johnson AE (2013) Disulfide-bond scanning reveals assembly state and beta-strand tilt angle of the PFO beta-barrel. Nat Chem Biol 9:383–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Saunders FK, Mitchell TJ, Walker JA, Andrew PW, Boulnois GJ (1989) Pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae, does not require a thiol group for in vitro activity. Infect Immun 57:2547–2552

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sekino-Suzuki N, Nakamura M, Mitsui K-I, Ohno-Iwashita Y (1996) Contribution of individual tryptophan residues to the structure and activity of θ-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur J Biochem 241:941–947

    Article  CAS  PubMed  Google Scholar 

  73. Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    Article  CAS  PubMed  Google Scholar 

  74. Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    Article  CAS  PubMed  Google Scholar 

  75. Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39:10284–10293

    Article  CAS  PubMed  Google Scholar 

  76. Sokolov A, Radhakrishnan A (2010) Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J Biol Chem 285:29480–29490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Solovyova AS, Nollmann M, Mitchell TJ, Byron O (2004) The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J 87:540–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J Biol Chem 282:15709–15716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA 104:20226–20231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    Article  CAS  PubMed  Google Scholar 

  81. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Xu L, Huang B, Du H, Zhang X, Xu J, Li X, Rao Z (2010) Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1:96–105

    Article  CAS  PubMed  Google Scholar 

  83. Ziblat R, Leiserowitz L, Addadi L (2010) Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC Bilayers. J Am Chem Soc 132:9920–9927

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory was supported by Grant Number GM 097414 from the National Institute of Health (A.P.H). B.B.J. was partially supported by the National Science Foundation, Integrative Graduate Education and Research Traineeship (IGERT), Institute for Cellular Engineering (DGE-0654128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro P. Heuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnson, B.B., Heuck, A.P. (2014). Perfringolysin O Structure and Mechanism of Pore Formation as a Paradigm for Cholesterol-Dependent Cytolysins. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_5

Download citation

Publish with us

Policies and ethics