Skip to main content

Fluorescence Imaging of MACPF/CDC Proteins: New Techniques and Their Application

  • Chapter
  • First Online:
MACPF/CDC Proteins - Agents of Defence, Attack and Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

Structural and biochemical investigations have helped illuminate many of the important details of MACPF/CDC pore formation. However, conventional techniques are limited in their ability to tackle many of the remaining key questions, and new biophysical techniques might provide the means to improve our understanding. Here we attempt to identify the properties of MACPF/CDC proteins that warrant further study, and explore how new developments in fluorescence imaging are able to probe these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Badan:

6-bromoacetyl-2-dimethylaminonaphthalene

CDC:

Cholesterol-dependent cytolysin

ER:

Endoplasmic reticulum

FIONA:

Fluorescence imaging with one-nanometre accuracy

FPs:

Fluorescent proteins

FRET:

Förster resonance energy transfer

FWHM:

Full width at half maximum

ILY:

Intermedilysin

LLO:

Listeriolysin O

MACPF:

Membrane attack complex/perforin

NBD:

7-nitro-2-1,3-benzoxadiazol-4-yl

PALM:

Photoactivated localization microscopy

PDMS:

Poly(dimethyl) siloxane

PFO:

Perfringolysin O

PLY:

Pneumolysin

PSF:

Point spread function

SHRImP:

Single-molecule high-resolution imaging with photobleaching

SIM:

Structured illumination microscopy

smFRET:

Single-molecule FRET

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

TIRF:

Total internal reflection fluorescence

µsSMT:

Microsecond single-molecule tracking

References

  1. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  CAS  PubMed  Google Scholar 

  2. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  3. Balachandran P, Hollingshead SK, Paton JC, Briles DE (2001) The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol 183:3108–3116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  5. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5:947–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Braun JS, Hoffmann O, Schickhaus M, Freyer D, Dagand E, Bermpohl D, Mitchell TJ, Bechmann I, Weber JR (2007) Pneumolysin causes neuronal cell death through mitochondrial damage. Infect Immun 75:4245–4254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brozell AM, Muha MA, Sanii B, Parikh AN (2005) A class of supported membranes: formation of fluid phospholipid bilayers on photonic band gap colloidal crystals. J Am Chem Soc 128:62–63

    Article  Google Scholar 

  9. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Meth Enzymol 211:353–388

    Article  CAS  PubMed  Google Scholar 

  10. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J 23:3206–3215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Demchenko AP, Mély Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Demuro A, Parker I (2005) “Optical Patch-clamping” single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels. J Gen Physiol 126:179–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schönle A, Jahn R, Jakobs S, Eggeling C, Hell SW (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dowd KJ, Farrand AJ, Tweten RK (2012) The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 8:e1002787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Comm 368:786–792

    Article  CAS  PubMed  Google Scholar 

  17. Epstein FH, Tuomanen EI, Austrian R, Masure HR (1995) Pathogenesis of pneumococcal infection. New Engl J Med 332:1280–1284

    Article  Google Scholar 

  18. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nature Rev Mol Cell Biol 9:929–943

    Article  Google Scholar 

  20. Fischer RS, Wu Y, Kanchanawong P, Shroff H, Waterman CM (2011) Microscopy in 3D: a biologist’s toolbox. Trends Cell Biol 21:682–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annal Physik 437:55–75

    Article  Google Scholar 

  22. Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

    Article  CAS  PubMed  Google Scholar 

  23. Gelber SE, Aguilar JL, Lewis KLT, Ratner AJ (2008) Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from gardnerella vaginalis. J Bacteriol 190:3896–3903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert RJ (2002) Pore-forming toxins. Cell Mol Life Sci 59:832–844

    Article  CAS  PubMed  Google Scholar 

  26. Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    Google Scholar 

  29. Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101:6462–6465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microscopy 198:82–87

    Article  CAS  Google Scholar 

  31. Gustafsson MGL, Shao L, Carlton PM, Wang CR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hamon MA, Batsché E, Régnault B, Tham TN, Seveau S, Muchardt C, Cossart P (2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci USA 104:13467–13472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Lett 19:780–782

    Article  CAS  Google Scholar 

  34. Heron AJ, Thompson JR, Cronin B, Bayley H, Wallace MI (2009) Simultaneous measurement of ionic current and fluorescence from single protein pores. J Am Chem Soc 131:1652–1653

    Article  CAS  PubMed  Google Scholar 

  35. Heuck AP, Hotze EM, Tweten RK, Johnson AE (2000) Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242

    Article  CAS  PubMed  Google Scholar 

  36. Heuck AP, Johnson AE (2002) Pore-forming protein structure analysis in membranes using multiple independent fluorescence techniques. Cell Biochem Biophys 36:89–101

    Article  CAS  PubMed  Google Scholar 

  37. Heuck AP, Tweten RK, Johnson AE (2003) Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J Biol Chem 278:31218–31225

    Article  CAS  PubMed  Google Scholar 

  38. Hotze EM, Heuck AP, Czajkowsky DM, Shao Z, Johnson AE, Tweten RK (2002) Monomer-monomer interactions drive the prepore to pore conversion of a β-barrel-forming cholesterol-dependent cytolysin. J Biol Chem 277:11597–11605

    Article  CAS  PubMed  Google Scholar 

  39. Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hotze EM, Wilson-Kubalek E, Farrand AJ, Bentsen L, Parker MW, Johnson AE, Tweten RK (2012) Monomer-Monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J Biol Chem 287:24534–24543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane β-sheet from a prepore intermediate. J Biol Chem 276:8261–8268

    Article  CAS  PubMed  Google Scholar 

  42. Jäger M, Nir E, Weiss S (2006) Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Prot Sci 15:640–646

    Article  Google Scholar 

  43. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Ann Rev Biochem 77:51–76

    Article  CAS  PubMed  Google Scholar 

  45. Kapanidis AN, Lee NK, Laurence TA, Doose Sr, Margeat E, Weiss S (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101:8936–8941

    Google Scholar 

  46. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnol 21:86–89

    Article  CAS  Google Scholar 

  47. Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, Heuser JE (2011) Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci 124:2414–2423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kondos SC, Hatfaludi T, Voskoboinik I, Trapani JA, Law RHP, Whisstock JC, Dunstone MA (2010) The structure and function of mammalian membrane-attack complex/perforin-like proteins. Tissue Antigens 76:341–351

    Article  CAS  PubMed  Google Scholar 

  49. Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR (2005) Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472

    Article  CAS  PubMed  Google Scholar 

  50. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  51. Lin Q, London E (2013) Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J Biol Chem 288:1340–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104:143–152

    Article  CAS  PubMed  Google Scholar 

  53. Magassa NG, Chandrasekaran S, Caparon MG (2010) Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. EMBO Rep 11:400–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Martin JR, Raibaud A, Ollo R (1994) Terminal pattern elements in Drosophila embryo induced by the torso-like protein. Nature 367:741–745

    Article  CAS  PubMed  Google Scholar 

  55. Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320

    CAS  PubMed  Google Scholar 

  56. Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY (2010) Stoichiometry of the KCNQ1-KCNE1 ion channel complex. Proc Natl Acad Sci USA 107:18862–18867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Nguyen AH, Nguyen VT, Kamio Y, Higuchi H (2006) Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal γ-hemolysin. Biochemistry 45:2570–2576

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen VT, Kamio Y, Higuchi H (2003) Single-molecule imaging of cooperative assembly of γ-hemolysin on erythrocyte membranes. EMBO J 22:4968–4979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Oliver AE, Parikh AN (2010) Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochim Biophys Acta 1798:839–850

    Article  CAS  PubMed  Google Scholar 

  60. Olofsson A, Hebert H, Thelestam M (1993) The projection structure of perfringolysin O (Clostridium perfringens θ-toxin). FEBS Lett 319:125–127

    Article  CAS  PubMed  Google Scholar 

  61. Paton JC, Andrew PW, Boulnois GJ, Mitchell TJ (1993) Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Ann Rev Microbiol 47:89–115

    Article  CAS  Google Scholar 

  62. Pilzer D, Gasser O, Moskovich O, Schifferli J, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immun 27:375–387

    Article  CAS  Google Scholar 

  63. Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011a) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955

    Google Scholar 

  64. Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011b) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108:21016–21021

    Google Scholar 

  65. Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat Struct Mol Biol 11:697–705

    Article  CAS  PubMed  Google Scholar 

  66. Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci USA 102:7139–7144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  CAS  PubMed  Google Scholar 

  69. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, others (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    Google Scholar 

  70. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  CAS  PubMed  Google Scholar 

  71. Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW (2007) Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367:1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sanii B, Smith AM, Butti R, Brozell AM, Parikh AN (2008) Bending membranes on demand: fluid Phospholipid Bilayers on Topographically deformable substrates. Nano Lett 8:866–871

    Article  CAS  PubMed  Google Scholar 

  74. Semrau S, Pezzarossa A, Schmidt T (2011) Microsecond single-molecule tracking (μsSMT). Biophys J 100(4):L19–L21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Shao L, Kner P, Rego EH, Gustafsson MG (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8:1044–1046

    Article  CAS  PubMed  Google Scholar 

  76. Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    Article  CAS  PubMed  Google Scholar 

  77. Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    Article  CAS  PubMed  Google Scholar 

  78. Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39:10284–10293

    Article  CAS  PubMed  Google Scholar 

  79. Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi G-Q, Zhuang X (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109:13978–13983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203

    Article  CAS  PubMed  Google Scholar 

  81. Shotton DM (1989) Confocal scanning optical microscopy and its applications for biological specimens. J Cell Sci 94:175–206

    Google Scholar 

  82. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423

    Article  CAS  PubMed  Google Scholar 

  83. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106:3125–3130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Solovyova AS, Nöllmann M, Mitchell TJ, Byron O (2004) The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J 87:540–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA 104:20226–20231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Song L, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–2600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Song L, Varma CA, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70:2959–2968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Steinfort C, Wilson R, Mitchell T, Feldman C, Rutman A, Todd H, Sykes D, Walker J, Saunders K, Andrew PW, Boulnois GJ, Cole PJ (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect Immun 57:2006–2013

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Stevens LM, Frohnhofer HG, Klingler M, Nusslein-Volhard C (1990) Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663

    Article  CAS  PubMed  Google Scholar 

  90. Taylor SD, Sanders ME, Tullos NA, Stray SJ, Norcross EW, McDaniel LS, Marquart ME (2013) The cholesterol-dependent cytolysin pneumolysin from Streptococcus pneumoniae binds to lipid raft microdomains in human corneal epithelial cells. PLoS ONE 8:e61300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping S, Bleackley RC, Kirchhausen T, Lieberman J (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 12:770–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Thompson JR, Cronin B, Bayley H, Wallace MI (2011) Rapid assembly of a multimeric membrane protein pore. Biophys J 101:2679–2683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    Article  CAS  PubMed  Google Scholar 

  94. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    Article  CAS  PubMed  Google Scholar 

  96. Wickham SE, Hotze EM, Farrand AJ, Polekhina G, Nero TL, Tomlinson S, Parker MW, Tweten RK (2011) Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8α and C9. J Biol Chem 286:20952–20962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science 300:2061–2065

    Article  CAS  PubMed  Google Scholar 

  98. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Accounts Chem Res 38:574–582

    Article  CAS  Google Scholar 

  99. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  CAS  PubMed  Google Scholar 

  100. Young JD-E, Hengartner H, Podack ER, Cohn ZA (1986) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859

    Article  CAS  PubMed  Google Scholar 

  101. Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419

    Article  CAS  PubMed  Google Scholar 

  102. Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ (1999) Imaging Ca2+ entering the cytoplasm through a single opening of a plasma membrane cation channel. J Gen Physiol 114:575–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Wallace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Senior, M.J., Wallace, M.I. (2014). Fluorescence Imaging of MACPF/CDC Proteins: New Techniques and Their Application. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_15

Download citation

Publish with us

Policies and ethics