Skip to main content

Fungal MACPF-Like Proteins and Aegerolysins: Bi-component Pore-Forming Proteins?

  • Chapter
  • First Online:
Book cover MACPF/CDC Proteins - Agents of Defence, Attack and Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4–5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

diΦPC:

diphytanoylphosphatidylcholine

EGFP:

Enhanced green fluorescent protein

Hi:

H. irregulare

LUV:

Large unilamellar vesicles

MACPF:

Membrane-attack complex/perforin

Mp:

M. perniciosa

OlyA:

Ostreolysin A

PLM:

Planar lipid membranes

PlyA:

Pleurotolysin A

PlyA2:

Pleurotolysin A2

PlyB:

Pleurotolysin B

Ss:

S. stellatus

Tv:

T. versicolor

References

  1. Al-Deen IH, Twaij HA, Al-Badr AA, Istarabadi TA (1987) Toxicologic and histopathologic studies of Pleurotus ostreatus mushroom in mice. J Ethnopharmacol 21:297–305

    Article  CAS  PubMed  Google Scholar 

  2. Barloy F, Lecadet MM, Delécluse A (1998) Cloning and sequencing of three new putative genes from Clostridium bifermentans CH18. Gene 211:293–299

    Article  CAS  PubMed  Google Scholar 

  3. Bass D, Richards TA (2011) Three reasons to re-evaluate fungal diversity ‘on earth and in the ocean’. Fungal Biol Rev 25:159–164

    Article  Google Scholar 

  4. Berne S, Križaj I, Pohleven F, Turk T, Maček P, Sepčić K (2002) Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 1570:153–159

    Article  CAS  PubMed  Google Scholar 

  5. Berne S, Lah L, Sepčić K (2009) Aegerolysins: structure, function, and putative biological role. Protein Sci 18:694–706

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Berne S, Sepčić K, Anderluh G, Turk T, Maček P, Poklar Ulrih N (2005) Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus. Biochemistry 44:11137–11147

    Article  CAS  PubMed  Google Scholar 

  7. Bernheimer AW, Avigad LS (1979) A cytolytic protein from the edible mushroom, Pleurotus ostreatus. Biochim Biophys Acta 585:451–461

    Article  CAS  PubMed  Google Scholar 

  8. Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T (2013) Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J Lipid Res 54:2933–2943

    Article  CAS  PubMed  Google Scholar 

  9. Bubeck D, Roversi P, Donev R, Morgan BP, Llorca O, Lea SM (2011) Structure of human complement C8, a precursor to membrane attack. J Mol Biol 405:325–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chowdhury HH, Rebolj K, Kreft M, Zorec R, Maček P, Sepčić K (2008) Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains. Toxicon 51:1345–1356

    Article  CAS  PubMed  Google Scholar 

  11. Dalla Serra M, Menestrina G (2000) Characterisation of molecular properties of pore-forming toxins with planar lipid bilayers. In: Holst O (ed) Bacterial toxins: methods and protocols. Humana Press, Totowa

    Google Scholar 

  12. Dobson GD, van West P, Gadd GM (2007) Exploitation of fungi. Cambridge University Press, Cambridge

    Google Scholar 

  13. Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ebina K, Ichinowatari S, Yokota K (1985) Studies on toxin of Aspergillus fumigatus. XXII. Fashion of binding of Asp-hemolysin to human erythrocytes and Asp-hemolysin-binding proteins of erythrocyte membranes. Microbiol Immunol 29:91–101

    Article  CAS  PubMed  Google Scholar 

  15. Ebina K, Sakagami H, Yokota K, Kondo H (1994) Cloning and nucleotide sequence of cDNA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1219:148–150

    Article  CAS  PubMed  Google Scholar 

  16. Ellis RT, Stockhoff BA, Stamp L, Schnepf HE, Schwab GE, Knuth M et al (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on Western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68:1137–1145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fernandez Espinar MT, Labarère J (1997) Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, an analysis of the predicted amino-acid sequence. Curr Genet 32:420–424

    Article  CAS  PubMed  Google Scholar 

  18. Fisher MC, Henk D, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  19. Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    Article  CAS  PubMed  Google Scholar 

  21. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40(Database issue):D26–D32

    Google Scholar 

  22. Hadders MA, Beringer DX, Gros P (2007) Structure of C8α-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  CAS  PubMed  Google Scholar 

  23. Heitman J (2011) Microbial pathogens in the fungal kingdom. Fungal Biol Rev 25:48–60

    Article  PubMed Central  PubMed  Google Scholar 

  24. Herman RA, Scherer PN, Young DL, Mihaliak CA, Meade T, Woodsworth AT et al (2002) Binary insecticidal crystal protein from Bacillus thuringiensis, Strain PS149B1: effects of individual protein components and mixtures in laboratory bioassays. J Econ Entomol 95:635–639

    Article  CAS  PubMed  Google Scholar 

  25. Heuck AP, Moe PC, Johnson BB (2010) The cholesterol-dependent cytolysin family of Gram-positive bacteria. In: Harris JR (ed) Cholesterol binding and cholesterol transport proteins. Subcellular biochemistry, Springer, Netherlands

    Google Scholar 

  26. Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Joh J-H, Lee S-H, Lee J-S, Kim K-H, Jeong S-J, Youn W-H et al (2007) Isolation of genes expressed during the developmental stages of the oyster mushroom, Pleurotus ostreatus, using expressed sequence tags. FEMS Microbiol Lett 276:19–25

    Article  CAS  PubMed  Google Scholar 

  28. Juntes P, Rebolj K, Sepčić K, Maček P, Žužek MC, Cestnik V et al (2009) Ostreolysin induces sustained contraction of porcine coronary arteries and endothelial dysfunction in middle- and large-sized vessels. Toxicon 54:784–792

    Article  CAS  PubMed  Google Scholar 

  29. Kudo Y, Fukuchi Y, Kumagai T, Ebina K, Yokota K (2001) Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1568:183–188

    Article  CAS  PubMed  Google Scholar 

  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  31. Lee SH, Kim BG, Kim KJ, Lee JS, Yun DW, Hahn JH et al (2002) Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Gen Biol 35:115–134

    Article  CAS  Google Scholar 

  32. Li H, Olson M, Lin G, Hey T, Tan SY, Narva KE (2013) Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with Western corn rootworm midgut membrane binding sites. PLoS ONE 8(1):e53079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lokar M, Kabaso D, Resnik N, Sepčić K, Kralj-Iglič V, Veranič P et al (2012) The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomedicine 7:1891–1902

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lv H, Kong Y, Yao Q, Zhang B, Leng FW, Bian HJ et al (2009) Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 16:198–205

    Article  CAS  PubMed  Google Scholar 

  35. Marsh D (2010) Liquid-ordered phases induced by cholesterol: A compendium of binary phase diagrams. Biochim Biophys Acta Biomembranes 1798:688–699

    Article  CAS  Google Scholar 

  36. Masson L, Schwab G, Mazza A, Brousseau R, Potvin L, Schwartz JL (2004) A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the Western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes. Biochemistry 43:12349–12357

    Article  CAS  PubMed  Google Scholar 

  37. Mondego JMC, Carazzolle MF, Costa GGL, Formighieri EF, Parizzi LP, Rincones J et al (2008) A genome survey of Moniliophthora perniciosa gives new insights into Witches’ broom disease of cacao. BMC Genom 9:548

    Article  Google Scholar 

  38. Nayak AP, Blachere F, Hettick J, Lukomski S, Schmechel D, Beezhold DH (2011) Characterization of recombinant terrelysin, a hemolysin of Aspergillus terreus. Mycopathologia 171:23–34

    Article  CAS  PubMed  Google Scholar 

  39. Nayak AP, Green BJ, Beezhold DH (2013) Fungal hemolysins. Med Mycol 51:1–16

    Article  CAS  PubMed  Google Scholar 

  40. Ota K (2013) Functional characterization of fungal two-component pore-forming proteins. Dissertation, University of Ljubljana

    Google Scholar 

  41. Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M et al (2013) Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 80:1855–1864

    Article  Google Scholar 

  42. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  43. Pires ABL, Gramacho KP, Silva DC, Goes-Neto A, Silva MM, Muniz-Sobrinho JS et al (2009) Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 9:158

    Article  PubMed Central  PubMed  Google Scholar 

  44. Pointing S, Hyde K (2001) Bio-exploitation of filamentous Fungi. In: Fungal diversity research series, University of Hong Kong, Hong Kong

    Google Scholar 

  45. Purdy L, Schmidt R (1996) Status of cacao Witches’ broom: biology, epidemiology, and management. Ann Rev Phytopathol 34:573–594

    Article  CAS  Google Scholar 

  46. Rao J, DiGiandomenico A, Artamonov M, Leitinger N, Amin AR, Goldberg JB (2011) Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 270:95–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rao J, DiGiandomenico A, Unger J, Bao Y, Polanowska-Grabowska RK, Goldberg JB (2008) A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa. Microbiol 154:654–665

    Article  CAS  Google Scholar 

  48. Rao J, Elliott MR, Leitinger N, Jensen RV, Goldberg JB, Amin AR (2011) RahU: An inducible and functionally pleiotropic protein in Pseudomonas aeruginosa modulates innate immunity and inflammation in host cells. Cell Immunol 270:103–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Rebolj K, Bakrač B, Garvas M, Ota K, Šentjurc M, Potrich C et al (2010) EPR and FTIR studies reveal the importance of highly ordered sterol-enriched membrane domains for ostreolysin activity. Biochim Biophys Acta 1798:891–902

    Article  CAS  PubMed  Google Scholar 

  50. Rebolj K, Ulrih-Poklar N, Maček P, Sepčić K (2006) Steroid structural requirements for interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers. Biochim Biophys Acta 1758:1662–1670

    Article  CAS  PubMed  Google Scholar 

  51. Resnik N, Sepčić K, Plemenitaš A, Windoffer R, Leube R, Veranič P (2011) Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 286:1499–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH et al (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  CAS  PubMed  Google Scholar 

  53. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM et al (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sakaguchi O, Shimada H, Yokota K (1975) Proceedings: purification and characteristics of hemolytic toxin from Aspergillus fumigatus. Jap J Med Sci & Biol 28:328–331

    CAS  Google Scholar 

  56. Schachter EN, Zuskin E, Goswami S, Castranova V, Arumugam U, Whitmer M et al (2005) Pharmacological study of oyster mushroom (Pleurotus ostreatus) extract on isolated guinea pig trachea smooth muscle. Lung 183:63–71

    Article  CAS  PubMed  Google Scholar 

  57. Schlumberger S, Kristan-Črnigoj K, Ota K, Frangež R, Molgό J, Sepčić K, Benoit E, Maček P (2013) Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom. FEBS Lett 588:35–40

    Article  PubMed  Google Scholar 

  58. Schnepf HE (2013) Modified Cry34 proteins. Patent, U.S.A 7939651

    Google Scholar 

  59. Schnepf HE, Lee S, Dojillo J, Burmeister P, Fencil K, Morera L et al (2005) Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Appl Environ Microbiol 71:1765–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sepčić K, Berne S, Potrich C, Turk T, Maček P, Menestrina G (2003) Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem 270:1199–1210

    Article  PubMed  Google Scholar 

  61. Sepčić K, Berne S, Rebolj K, Batista U, Plemenitaš A, Šentjurc M et al (2004) Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 575:81–85

    Article  PubMed  Google Scholar 

  62. Shibata T, Kudou M, Hoshi Y, Kudo A, Nanashima N, Miyairi K (2010) Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edible mushroom, Pleurotus eryngii. Toxicon 56:1436–1442

    Article  CAS  PubMed  Google Scholar 

  63. Shim SM, Kim SB, Kim HY, Rho H-S, Lee HS, Lee MW et al (2006) Genes expressed during fruiting body formation of Agrocybe cylindracea. Mycobiol 34:209–213

    Article  CAS  Google Scholar 

  64. Skočaj M, Bakrač B, Križaj I, Maček P, Anderluh G, Sepčić K (2013) The sensing of membrane microdomains based on pore-forming toxins. Curr Med Chem 20:491–501

    PubMed  Google Scholar 

  65. Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N et al (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982

    Article  CAS  PubMed  Google Scholar 

  66. Veatch SL, Gawrisch K, Keller SL (2006) Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys J 90:4428–4436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Vidic I, Berne S, Drobne D, Maček P, Frangež R, Turk T et al (2005) Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycol Res 109:377–382

    Article  CAS  PubMed  Google Scholar 

  68. Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y et al (2013) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS ONE 8(2):e56686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang S, Clark KD, Strand MR (2011) The protein P23 identifies capsule-forming plasmatocytes in the moth Pseudoplusia includens. Develop Comp Immunol 35:501–510

    Article  CAS  Google Scholar 

  70. Žužek MC, Maček P, Sepčić K, Cestnik V, Frangež R (2006) Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus), in rodents. Toxicon 48:264–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

GV and MDS thank the Laboratory of Biomolecular Sequence and Structure Analysis for Health (LaBSSAH) for technical support. The Slovenian authors were supported by the Slovenian Research Agency (contracts P1-0207 and J1-4305). The authors thank Christopher Berrie for editorial revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Maček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ota, K., Butala, M., Viero, G., Dalla Serra, M., Sepčić, K., Maček, P. (2014). Fungal MACPF-Like Proteins and Aegerolysins: Bi-component Pore-Forming Proteins?. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_14

Download citation

Publish with us

Policies and ethics