Skip to main content

Maintaining Landscape Functionality Under Land Use Change

  • Chapter
  • First Online:
The Security of Water, Food, Energy and Liveability of Cities

Part of the book series: Water Science and Technology Library ((WSTL,volume 71))

  • 2222 Accesses

Abstract

Peri-urban growth can affect local flood and drought risks, which are exacerbated by climate change. Research into optimal planning and arrangement of landscape functions is needed to manage local flood and drought risks. As a first step, simple hydrological models are required to study the range of feedbacks and interactions within the peri-urban areas. A demonstration, using a simple modeling example, indicates how including buffer zones will reduce local flooding and how such models can be used for virtual experiments. Further development of such simple tools into spatial and agent based models will support new field studies and policy development for peri-urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidin H, Djaja R, Darmawan D, Hadi S, Akbar A, Rajiyowiryono H et al (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat Hazards 23:365–387

    Article  Google Scholar 

  • Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168–192

    Article  Google Scholar 

  • Alberti M (2010) Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr Opin Environ Sustain 2:178–184

    Article  Google Scholar 

  • Andrews FT, Croke BFW, Jakeman AJ (2011) An open software environment for hydrological model assessment and development. Environ Model Softw 26:1171–1185

    Article  Google Scholar 

  • Bennett SY, Bishop TFA, Vervoort RW (2013) Using SWAP to qantify space and time related uncertainty in deep drainage model estimates: a case study from Northern NSW. Agricultural Water Management, Australia (in press)

    Google Scholar 

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36

    Article  Google Scholar 

  • Bhaduri B, Minner M, Tatalovich S, Harbor J (2001) Long-term hydrologic impact of urbanization: a tale of two models. J Water Resour Plan Manage 127:13–19

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Boughton W (2005) Catchment water balance modelling in Australia 1960–2004. Agric Water Manag 71:91–116

    Article  Google Scholar 

  • Brabec EA (2009) Imperviousness and land-use policy: toward an effective approach to watershed planning. J Hydrol Eng 14:425–433

    Article  Google Scholar 

  • Dagmar H (2009) Effects of urbanisation on the water balance—a long-term trajectory. Environ Impact Assess Rev 29:211–219

    Article  Google Scholar 

  • DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18:2183–2186

    Article  Google Scholar 

  • Eakin H, Lerner AM, Murtinho F (2010) Adaptive capacity in evolving peri-urban spaces: Responses to flood risk in the Upper Lerma River Valley, Mexico. Glob Environ Change 20:14–22

    Article  Google Scholar 

  • Glendenning CJ, Vervoort RW (2011) Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: the Arvari River, Rajasthan, India: Part 2. Catchment-scale impacts. Agric Water Manag 98:715–730

    Article  Google Scholar 

  • Gordon A, Simondson D, White M, Moilanen A, Bekessy SA (2009) Integrating conservation planning and landuse planning in urban landscapes. Landscape Urban Plan 91:183–194

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X et al (2008) Global change and the ecology of cities. Science 319:756–760

    Article  Google Scholar 

  • Jacobson CR (2011) Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. J Environ Manage 92:1438–1448

    Article  Google Scholar 

  • Klijn F, Bruijn K, Knoop J, Kwadijk J (2012) Assessment of the Netherlands’ flood risk management policy under global change. Ambio 41:180–192

    Article  Google Scholar 

  • Leopold LB (1968) Hydrology for urban land planning—a guidebook on the hydrologic effects of urban land use, circular 554. United States Geological Survey, Washington

    Google Scholar 

  • McDonald R, Douglas I, Revenga C, Hale R, Grimm N, Grönwall J et al. (2011a) Global urban growth and the geography of water availability, quality, and delivery. Ambio: J Human Environ 40:437–446

    Google Scholar 

  • McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M et al (2011b) Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci 108:6312–6317

    Article  Google Scholar 

  • Mejía AI, Moglen GE (2010) Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrol Process 24:3359–3373

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaie DP et al (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  Google Scholar 

  • Misra A (2011) Impact of urbanization on the hydrology of Ganga basin (India). Water Resour Manage 25:705–719

    Article  Google Scholar 

  • Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico city: field investigations and predictive modeling. Water Resour Res 35:3327–3341

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2008) Streams in the urban landscape. In: Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, Simon U, ZumBrunnen C (ed) Urban ecology. Springer, US, pp 207–231

    Google Scholar 

  • Pennington DN, Hansel JR, Gorchov DL (2010) Urbanization and riparian forest woody communities: diversity, composition, and structure within a metropolitan landscape. Biol Conserv 143:182–194

    Article  Google Scholar 

  • Sanchez PA, Ahamed S, Carré F, Hartemink AE, Hempel J, Huising J et al (2009) Digital soil map of the world. Science 325:680–681

    Article  Google Scholar 

  • Sivapalan M, Blöschl G, Zhang L, Vertessy RA (2003) Downward approach to hydrological prediction. Hydrol Process 17:2101–2111

    Article  Google Scholar 

  • van Ogtrop FF, Vervoort RW, Heller GZ, Stasinopoulos DM, Rigby RA (2011) Long-range forecasting of intermittent streamflow. Hydrol Earth Syst Sci 15:3343–3354

    Article  Google Scholar 

  • Weiler M, McDonnell JJ (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. J Hydrol 285:3–18

    Article  Google Scholar 

  • Wood S (2006) In generalized additive models: an introduction. CRC Press, Boca Raton

    Google Scholar 

  • Zhang Y, Chiew FHS, Zhang L, Li H (2009) Use of remotely sensed actual evapotranspiration to improve rainfall–runoff modeling in Southeast Australia. J Hydrometeorol 10:969–980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Vervoort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vervoort, R.W. (2014). Maintaining Landscape Functionality Under Land Use Change. In: Maheshwari, B., Purohit, R., Malano, H., Singh, V., Amerasinghe, P. (eds) The Security of Water, Food, Energy and Liveability of Cities. Water Science and Technology Library, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8878-6_30

Download citation

Publish with us

Policies and ethics