Skip to main content

Lateral Motion and Deformation Along the Dead Sea Transform

  • Chapter
  • First Online:

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 6))

Abstract

This paper presents an updated summary of the history and shallow structure of the Dead Sea transform (DST) and its plate tectonic context. The DST formed in the Early Miocene as a transform boundary between the Sinai and Arabian plates. The lateral offset was ca. 105 km near the Dead Sea. Since the DST trace is irregular in map view, the lateral motion led to formation of a 10–80 km wide deformation zone along the plate junction. Thus, the structures along the DST can be interpreted within the framework of the Sinai-Arabia plate kinematics. South of ca. lat. 33° transtension, which increased with time, led to variable oblique separation of the plate edges. This produced an almost continuous ca. 5–25 km wide depression whose structure is dominated by a string of pull-apart basins up to 15–20 km wide and up to ca. 12 km deep. The crystalline crust under the largest basins was appreciably thinned and may have been intruded by basalts. The structural pattern changed over time, the present pattern having been mostly established in the second half of the DST history. North of lat. ca. 33°N transpression dominates and the DST flanks are strongly deformed by folding, faulting, and rotation of fault blocks on vertical axes, which together produce shortening perpendicular to the DST and also left lateral shearing of its flanks, qualitatively compatible with the plate kinematic. The deformation can also account for the observed decrease of the lateral offset along the main fault line from ca. 100 km at ca. lat 33°N to 65–70 km at lat. 36°–36.5°N, and also leads to left lateral shearing along the continental margin near the Galilee and farther north. North of lat. 36.5°N the DST now interacts with the Anatolian plate and the Cyprus arc. This resulted from a rearrangement of the plate configuration in that region when westward extrusion of Anatolia began and the East Anatolian Fault formed, but the details of the kinematic changes are incompletely known. This change obscured the structural relations in this region during the early stages of the DST history.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adiyaman Ö, Chorowicz J (2002) Late Cenozoic tectonics and volcanism in the northwestern corner of the Arabian plate: a consequence of the strike-slip Dead Sea fault zone and the lateral escape of Anatolia. J Volcanol Geotherm Res 117:327–345

    Google Scholar 

  • Al Tarazi E, Abu Rajab J, Gomez F, Cochran W, Jaafar R, Ferry M (2011) GPS measurements of near-field deformation along the southern Dead Sea fault system. Geochem Geophys Geosyst 12:Q12021. doi:10.1029/2011GC003736

    Google Scholar 

  • Alchalbi A, 15 others (2010) Crustal deformation in northwestern Arabia from GPS measurements in Syria: slow slip rate along the northern Dead Sea fault. Geophys J Int 180:125–135. doi:10.1111/j.1365-246X.2009.04431.x

  • Aldersons F, Ben-Avraham Z, Hofstetter A, Kissling E, Al-Jazreen A (2003) Lower-crustal strength under the Dead Sea basin from local earthquake data and rheological modeling. Earth Planet Sci Lett 214:129–142. doi:10.1016/S0012-821X(03)00381-9

    Google Scholar 

  • Al-Maleh K, Delaune M, Mouty M, Parrot JF (1992) Relations du front de la nappe ophiolitique du nord-ouest syrien avec son substratum de la part et d’autre de la faille du levant: Baer-Bassit, Kurd-Dagh. Compt Rendus Acad Sci Paris 314:1195–1202

    Google Scholar 

  • Al-Zoubi A, ten-Brink US (2002) Lower crustal flow and the role of shear in basin subsidence: an example from the Dead Sea Basin. Earth Planet Sci Lett 199:67–79

    Google Scholar 

  • Al-Zoubi A, Heinrich T, Qabbami I, Ten-Brink US (2007) The northern end of the Dead Sea basin: geometry from reflection seismic evidence. Tectonophysics 434:55–69

    Google Scholar 

  • ArRajehi A, 16 others (2010) Geodetic constraints on present-day motion of the Arabian plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29:TC3011. doi:10.1029/2009TC002482

  • Avni Y, Garfunkel Z, Bartov Y, Ginat H (1994) Pleistocene fault system in the central and southern Negev and its implications for the tectonic and geomorphic history of the Arava rift margin. Geol Surv Isr Curr Res 9:51–58

    Google Scholar 

  • Avni Y, Bartov Y, Garfunkel Z, Ginat H (2000) The Arava Formation – A Pliocene sequence in the Arava Valley and its western margin, southern Israel. Isr J Earth Sci 50:101–120

    Google Scholar 

  • Avni Y, Segev A, Ginat H (2012) Oligocene regional denudation of the northern Afar dome: pre- and syn- breakup stages of the Afro-Arabian plate. Geol Soc Am Bull 124:1871–1897

    Google Scholar 

  • Baer G, Hirsch F, Ron H (1998) The Newe Ativ graben, Mt. Hermon: its origin and implications for the regional structure. Isr J Earth Sci 46:61–78

    Google Scholar 

  • Bandel K (1981) New stratigraphic and structural evidence for lateral dislocation in the Jordan rift connected with description of the Jurassic rock column in Jordan. N Jb Geol Paläont (Abh) 161:271–308

    Google Scholar 

  • Bandel K, Khouri H (1981) Lithostratigraphy of the Triassic in Jordan. Facies 4:1–26

    Google Scholar 

  • Bartov Y (1974) A structural and paleogeographic study of the central Sinai faults and domes. Dissertation, Hebrew Univ Jerusalem (in Hebrew, Eng abs), 143 p

    Google Scholar 

  • Bartov Y (1994) The geology of the Arava. Geol Sur Isr report GSI/4/94, 16 p. (in Hebrew)

    Google Scholar 

  • Bartov Y, Sagy A (2004) Late Pleistocene extension and strike-slip in the Dead Sea basin. Geol Mag 141:565–572

    Google Scholar 

  • Bartov Y, Avni Y, Calvo R, Frieslander U (1998) The Zofar Fault – A major intra-rift feature in the Arava rift valley. Geol Surv Isr Curr Res 11:27–32

    Google Scholar 

  • Basha S (1982) Stratigraphy, paleogeography and oil possibilities of the Azraq-sirhan-Turayf basin (Jordan-Saudi Arabia). Dirasat 9:85–106

    Google Scholar 

  • Bein A, Gvirtzman G (1977) A Mesozoic fossil edge of the Arabian plate along the Levant coast and its bearing on the evolution of the Eastern Mediterranean. In: Biju-duval B, Montadert L (eds) Symposium on the history of the Mediterranean basins. Split. Edit Technip, Paris, pp 95–109

    Google Scholar 

  • Belitzky S (1987) Tectonics of the Korazim saddle. Dissertation, Hebrew Univ Jerusalem 94 p (in Hebrew)

    Google Scholar 

  • Ben-Avraham Z (1985) Structural framework of the Gulf of Elat (Aqaba), northern Red Sea. J Geophys Res 90:703–726

    Google Scholar 

  • Ben-Avraham Z, Almagor G, Garfunkel Z (1979) Sediments and structure of the Gulf of Elat. Sediment Geol 23:239–267

    Google Scholar 

  • Ben-Avraham Z, Garfunkel Z (1986) Character of transverse faults in the Elat pull-apart basin. Tectonics 5:1161–1169

    Google Scholar 

  • Ben-Avraham Z, Hanel R, Vilinger H (1978) Heat flow through the Dead Sea rift. Mar Geol 28:253–269

    Google Scholar 

  • Ben-Avraham Z, Ten Brink U, Bell R, Reznikov M (1996) Gravity field over the Sea of Galilee: evidence for a composite basin along a transform fault. J Geophys Res 101:533–544

    Google Scholar 

  • Ben-Avraham Z, Garfunkel Z, Lazar M (2008) Geology and evolution of the southern Dead Sea fault with emphasis on subsurface structure. Ann Rev Earth Planet Sci 36:357–387

    Google Scholar 

  • Ben-Avraham Z, Lazar M, Garfunkel Z, Reshef M, Ginzburg A, Rotstein Y, Frieslander U, Bartov Y, Shulman H (2012) Chapter 17: Structural styles along the Dead Sea fault. In: Roberts DG, Bally AW (eds) Regional geology and tectonics: phanerozoic passive margins, cratonic basins and global tectonic maps, vol 1C. Elsevier, Burlington, pp 617–634

    Google Scholar 

  • Bender F (1974) Geology of Jordan. Gebrüder Borntraeger, Berlin/Stuttgart, 196 p

    Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian massif with special reference to the Sinai Peninsula. Precambian Res 28:1–74

    Google Scholar 

  • Beydoun ZR (1977) Petroleum prospects of Lebanon: reevaluation. Am Assoc Petrol Geol Bull 61:43–64

    Google Scholar 

  • Bosworth W (2005) The Red Sea and Gulf of Aden. J Afr Earth Sci 43:334–378

    Google Scholar 

  • Boulton SJ, Robertson AHF, Ünlügenç U (2006) Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, southern Turkey: a two phase model for graben formation. Geol Soc Lond Spec Publ 260:613–634

    Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey – a synthesis. Geodinamica Acta 14:3–30. doi:10.1016/S0985-3111(01)01066-X

    Google Scholar 

  • Brew G, Barazangi M, Al-Maleh K, Sawaf T (2001a) Tectonic and geologic evolution of Syria. GeoArabia 6:573–616

    Google Scholar 

  • Brew G, Lupa J, Barazangi M, Sawaf T, Al-Imam A, Zaza T (2001b) Structure and tectonic development of the Ghab basin and the Dead Sea fault system, Syria. J Geol Soc 158:665–674

    Google Scholar 

  • Butler RWH, Spencer S, Griffiths HM (1998) The structural response to evolving plate kinematics during transpression: evolution of the Lebanese restraining bend of the Dead Sea transform. Geol Soc Lond Spec Publ 135:81–106

    Google Scholar 

  • Calvo R (2002) Stratigraphy and petrology of the Hazeva formation in the Arava and the Negev. Geol Surv Isr report GSI/22/02, 264 p (in Hebrew, Engl abst)

    Google Scholar 

  • Carton H, Singh SC, Tapponnier P, Elias A, Briais A, Sursock A, Jomaa R, King GCP, Daeron M, Jacques E, Barrier E (2009) Seismic evidence for Neogene and active shortening offshore of Lebanon (Shalimar cruise). J Geophys Res 114:B07407. doi:10.1029/2007JB005391

    Google Scholar 

  • Cetin H, Guneyli H, Mayer L (2003) Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian fault zone, Turkey. Tectonophysics 374:163–197

    Google Scholar 

  • Chaimov TA, Barazangi M, Al-Saad D, Sawaf T, Gebran A (1990) Balanced cross sections and shortening in the Palmyride fold belt of Syria and implications for movement along the Dead Sea fault system. Tectonics 9:1369–1386

    Google Scholar 

  • Chorowicz J, Dhont D, Ammar O, Rukieh M, Bilal A (2005) Tectonics of the Pliocene Homs basalts (Syria) and implications fro the Dead Sea fault zone activity. J Geol Soc 162:259–271

    Google Scholar 

  • Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Google Scholar 

  • Cochran JR (1983) A model for the development of the Red Sea. Am Assoc Petrol Geol Bull 67:41–49

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosys 6(3). doi:10.1029/2004GC000826

  • Cole GA, Abu-Al MA, Colling EL, Halpern HI, Carrigan WJ, Savage GR, Scolaro RJ, Al-Sharidi SH (1995) Petroleum geochemistry of the Midyan and Jaizan basins of the Red Sea, Saudi Arabia. Mar Pet Geol 12:597–614

    Google Scholar 

  • Coskun B (1994) Oil possibilities of duplex structures in the Amik-Reyhanli basin, SE Turkey. J Pet Geol 17:461–472

    Google Scholar 

  • Crowell JC (1974) Origin of late Cenozoic basins in southern California. Soc Econ Paleont Mineralog, Spec Publ 22:190–204

    Google Scholar 

  • Druckman Y (1974) The stratigraphy of the Triassic sequence in southern Israel. Isr Geol Surv Bull 64:1–92

    Google Scholar 

  • Dubertret L (1932) Les formes structurales de la Syria et de la Palestine: leur origine. Compt Rendus Acad Sci Paris 195:65–67

    Google Scholar 

  • Dubertret L (1955) Carte géologique du Liban, scale 1:200 000, with explanatory notes. Ministry of Public Works, Beirut

    Google Scholar 

  • Dubertret L (1970) Review of structural geology of the Red Sea and surrounding areas. Phil Trans R Soc London A267:9–20

    Google Scholar 

  • Dullo WC, Hötzl H, Jado AR (1983) New stratigraphical results from the Tertiary sequence of Midyan area, NW Saudi Arabia. Newslett Stratigr 12:83

    Google Scholar 

  • Eaton S, Robertson AHF (1993) The Miocene Pakhna Formation, southern Cyprus, and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean. Sediment Geol 86:273–296

    Google Scholar 

  • Eckstein Y (1979) Review of the heat flow data from the Eastern Mediterranean region. Pure Appl Geophys 117:150–179

    Google Scholar 

  • Ehrhardt A, Hubscher C, Ben-Avraham Z, Gajewski D (2005) Seismic study of pull-apart-induced sedimentation and deformation in the Northern Gulf of Aqaba (Elat). Tectonophysics 396:59–79

    Google Scholar 

  • Elias A, Tapponnier P, Singh SC, King GCP, Briais A, Daëron M, Carton H, Sursock A, Jacques E, Jomaa R, Klinger Y (2007) Active thrusting offshore Mount Lebanon: source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake. Geology 35:755–758. doi:10.1130/G23631A.1

    Google Scholar 

  • Ellenblum R, Marco S, Agnon A, Rockwell T, Boas A (1998) Crusader castle torn apart by earthquake at dawn, 20 May 1202. Geology 26:303–306

    Google Scholar 

  • Eyal M, Eyal Y, Bartov Y, Steinitz G (1981) The tectonic development of the western margin of the Gulf of Elat (Aqaba) rift. Tectonophysics 80:39–66

    Google Scholar 

  • Fleischer E (1968) The subsurface geology of the HulA Valley and the Korazijm area. Geol Surv Isr report 15 p (in Hebrew)

    Google Scholar 

  • Förster A, Forster HJ, Massarwe R, Masri A, Tarawneh K (2007) The surface heat flow of the Arabian shield in Jordan. J Asian Earth Sci 30:271–284

    Google Scholar 

  • Freund R (1965) A model for the development of Israel and adjacent areas since the Upper Cretaceous times. Geol Mag 102:189–205

    Google Scholar 

  • Freund R (1970) Plate tectonics of the Red Sea and East Africa. Nature 228:453

    Google Scholar 

  • Freund R, Garfunkel Z, Zak I, Goldberg M, Weissbrod T, Derin B (1970) The shear along the Dead Sea rift. Phil Trans R Soc London A267:107–130

    Google Scholar 

  • Frieslander U (2000) The structure of the Dead Sea transform emphasizing the Arava. Dissertation, Hebrew Univ Jerusalem, 106 p (in Hebrew English abstract)

    Google Scholar 

  • Frieslander U, Ben-Avraham Z (1989) Magnetic field over the Dead Sea and vicinity. Mar Pet Geol 6:148–160

    Google Scholar 

  • Fuis GS, Mooney WD, Heaky JH, McMechan GA, Lutter WJ (1984) A seismic refraction survey of the Imperial Valley region, California. J Geophys Res 89:1165–1189

    Google Scholar 

  • Galli P (1999) Active tectonics along the Wadi Araba-Jordan valley transform fault. J Geophys Res 104:2777–2796

    Google Scholar 

  • Gardosh M, Reches Z, Garfunkel Z (1990) Holocene tectonic deformation along the western margins of the Dead Sea. Tectonophysics 180:123–137

    Google Scholar 

  • Gardosh M, Kashai E, Salhov S, Shulamn H, Tennenbaum E (1997) Hydrocarbon exploration in the southern Dead Sea area. In: Niemi T, Ben-Avraham Z, Gat JR (eds) The Dead Sea. Oxford University Press, New York, pp 57–72

    Google Scholar 

  • Gardosh MA, Garfunkel Z, Druckman Y, Buchbinder B (2010) Neotethyan rifting and its role in shaping the Levant Basin and margin. Geol Soc Lond Spec Publ 341:9–36. doi:10.1144/SP341.2

    Google Scholar 

  • Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81–108

    Google Scholar 

  • Garfunkel Z (1987) Post-Precambrian sediments. In: Bentor YK, Eyal M (eds) Jebel Sabbagh sheet, explanatory note. Israel Academy of Sciences and Humanities, Jerusalem, pp 386–392

    Google Scholar 

  • Garfunkel Z (1988) The pre-Quaternary geology of Israel. In: Yom-Tov Y, Tchernov E (eds) The zoogeography of Israel. W Junk, Dordrecht/Holland, pp 7–34

    Google Scholar 

  • Garfunkel Z (1989) Tectonic setting of Phanerozoic magmatism in Israel. Isr J Earth Sci 38:51–74

    Google Scholar 

  • Garfunkel Z (1998) Constraints on the origin and history of the Eastern Mediterranean basin. Tectonophysics 298:5–36

    Google Scholar 

  • Garfunkel Z (1999) History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern Arabo-Nubian Shield. Isr J Earth Sci 48:135–157

    Google Scholar 

  • Garfunkel Z (2011) The long- and short-term lateral slip and seismicity along the Dead Sea transform: an interim reevaluation. Isr J Earth Sci 58:217–235. doi:10.1560/IJES.58.3-4.217

    Google Scholar 

  • Garfunkel Z, Bartov Y (1977) The tectonics of the Suez rift. Isr Geol Surv Bull 71:1–44

    Google Scholar 

  • Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176

    Google Scholar 

  • Garfunkel Z, Ban-Avraham Z (2001) Basins along the Dead Sea Transform. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri Tethyan rift/wrench basins and passive margins, Mémoires du Muséum national d’histoire naturelle 186. Publications scientifiques du Muséum, Paris, pp 607–627

    Google Scholar 

  • Garfunkel Z, Beyth M (2006) Constraints on the structural development of Afar imposed by the kinematic of the major surrounding plates. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African System, Geological Society special publication 259. Geological Society, London, pp 23–42

    Google Scholar 

  • Garfunkel Z, Derin B (1984) Permian-Early Mesozoic tectonism and continental margin formation in Israel and its implications for the history of the eastern Mediterranean. Geol Soc Lond Spec Publ 17:187–201

    Google Scholar 

  • Garfunkel Z, Ron H (1985) Block rotation and deformation by strike slip fault 2. The properties of a type of macroscopic discontinuous deformation. J Geophys Res 90:8589–8602

    Google Scholar 

  • Garfunkel Z, Zak I, Freund R (1981) Active faulting in the Dead Sea rift. Tectonophysics 80:1–26

    Google Scholar 

  • Gaulier JM, LePichon X, Lyberis N, Averdik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crustal thickness, Northern Red Sea and Gulf of Suez. Tectonophysics 153:55–88

    Google Scholar 

  • Ginat H, Avni Y (1994) The Arava conglomerate: a Pliocene valley deposit crossing the Dead Sea rift. Geol Surv Isr Curr Res 9:59–62

    Google Scholar 

  • Ginzburg A, Ben-Avraham Z (1997) A seismic refraction study of the north basin of the of the Dead Sea, Israel. Geophys Res Lett 24:2063–2066

    Google Scholar 

  • Ginzburg A, Reshef M, Ben-Avraham Z, Schattner U (2006) The style of transverse faulting in the Dead Sea basin from seismic reflection data: the Amatzyahu fault. Isr J Earth Sci 55:129–139

    Google Scholar 

  • Glickson YA (1966) The lacustrine Neogene of Kefar Giladi area. Isr J Earth Sci 15:135–154

    Google Scholar 

  • Goldberg M, Beyth M (1991) Tiran Island: an internal block at the junction of the Red Sea rift and Dead Sea transform. Tectonophysics 198:261–273

    Google Scholar 

  • Gomez F, Meghraoui M, Darkal AN, Tabet C, Khawlie M, Khair K, Sbeinati R, Darawcheh R, Khair K, Barazangi M (2001) Coseismic displacements along the Serghaya fault: an active branch of the Dead Sea fault system in Syria and Lebanon. J Geol Soc Lond 158:405–408

    Google Scholar 

  • Gomez F, Khawlie M, Tabet C, Darkal AN, Khair K, Barazangi M (2006) Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria. Earth Planet Sci Lett 241:913–931

    Google Scholar 

  • Gomez F, Karam G, Khawlie M, McClusky S, Vernant P, Reilinger R, Jaafar R, Tabet C, Khair K, Barazangi M (2007) Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon. Geophys J Int 168:1021–1028. doi:10.1111/j.1365-246X.2006.03328.x

    Google Scholar 

  • Gregor CB, Mertzman S, Nairn AEM, Negendank J (1974) Paleomagnetism and the Alpine tectonics of Eurasia. V. The paleomagnetism of some Mesozoic and Cenozoic volcanic rocks from the Lebanon. Tectonophysics 21:375–396

    Google Scholar 

  • Gregory JW (1921) The rift Valleys and geology of East Africa. Seeley, London, 479 p

    Google Scholar 

  • Griffiths HM, Clark RA, Thorp MK, Spencer S (2000) Strain accommodation at the lateral margin of an active transpressive zone: geological and seismological evidence from the Lebanese restraining bend. J Geol Soc Lond 157:289–302

    Google Scholar 

  • Guiraud R, Issawi B, Boswoth W (2001) Phanerozoic history of Egypt and surrounding areas. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri Tethyan rift/wrench basins and passive margins, Mémoires du Muséum national d’histoire naturelle 186. Publications scientifiques du Muséum, Paris, pp 469–509

    Google Scholar 

  • Hall J, Aksu AE, Calon TJ, Yasar D (2005a) Varying tectonic control on basin development at an active microplate margin: Latakia Basin, Eastern Mediterranean. Mar Geol 221:15–60

    Google Scholar 

  • Hall J, Calon TJ, Aksu AE, Meade SR (2005b) Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Mar Geol 221:261–297

    Google Scholar 

  • Hancock PL, Atiya MS (1979) Tectonic significance of mesofracture systems associated with the Lebanese segment of the Dead Sea transform faults. J Struct Geol 1:143–153

    Google Scholar 

  • Harash A, Bar Y (1988) Faults, landslides and seismic hazards along the Jordan River gorge, northern Israel. Eng Geol 25:1–15

    Google Scholar 

  • Hardenberg MF, Robertson AHF (2007) Sedimentology of the NW margin of the Arabian plate and the SW-NE trending Nahr El-Kebir half-graben in northern Syria during the latest Cretaceous and Cenozoic. Sediment Geol 201:231–266

    Google Scholar 

  • Harding TP, Vierbuchen RC, Christie-Blick N (1985) Structural styles, plate tectonic settings and hydrocarbon traps of divergent (transtensional) wrench faults. Soc Econ Paleontol Mineral 37:51–77

    Google Scholar 

  • Hatcher RD, Zeiz I, Reagan RD, Abu-Ajameh M (1981) Sinistral strike-slip motion on the Dead Sea rift: confirmation from new magnetic data. Geology 9:458–462

    Google Scholar 

  • Heimann A, Braun D (2000) Quaternary stratigraphy of the Kinnarot Basin, Dead Sea transform, northeastern Israel. Isr J Earth Sci 49:31–44

    Google Scholar 

  • Heimann A, Ron H (1993) Geometrical changes of plate boundaries along part of the northern Dead Sea transform: geochronological and paleomagnetic evidence. Tectonics 12:477–491. doi:10.1029/92TC01789

    Google Scholar 

  • Heimann A, Steinitz G (1989) 40Ar/39Ar total gas ages of basalts from Notera #3 well, Hula Valley, Dead Sea Rift: stratigraphic and tectonic implications. Isr J Earth-Sci 38:173–184

    Google Scholar 

  • Heimann A, Eyal M, Eyal Y (1990) The evolution of Barahta rhomb-shaped graben, Mount Hermon, Dead Sea Transform. Tectonophysics 141:101–110

    Google Scholar 

  • Heimann A, Steinitz G, Mor D, Shaliv G (1996) The Cover Basalt Formation, its age and its regional and tectonic setting: implications from K-Ar and 40Ar/39Ar geochronology. Isr J Earth Sci 45:55–71

    Google Scholar 

  • Heimann A, Zilberman E, Amit R, Frieslander U (2009) Northward migration of the southern diagonal fault of the Hula pull-apart basin, Dead Sea Transform, northern Israel. Tectonophysics 476:496–511

    Google Scholar 

  • Hempton MR (1987) Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics 6:687–705

    Google Scholar 

  • Henry B, Homberg C, Mroueh M, Hamdan W, Higazi F (2010) Rotations in Lebanon inferred from new palaeomagnetic data and implications for the evolution of the Dead Sea Transform system. Geol Soc Lond Spec Publ 341:269–285

    Google Scholar 

  • Heybroek F (1942) La Geologie d’une partie du Liban sud. Leidsche Geol Medded 12:251–470

    Google Scholar 

  • Hofstetter R, Klinger Y, Amrat AQ, Rivera L, Dorbath L (2007) Stress tensor and focal mechanisms along the Dead Sea fault and related structural elements based on seismological data. Tectonophysics 429:165–181

    Google Scholar 

  • Hofstetter R, Gitterman Y, Pinsky V, Kraeva N, Feldman L (2008) Seismological observations of the northern Dead Sea basin earthquake on 11 February 2004 and its associated activity. Isr J Earth Sci 57:101–124. doi:10.1560/IJES.57.2.101

    Google Scholar 

  • Homberg C, Barrier E, Mroueh M, Muller C, Hamdan W, Higazi F (2010) Tectonic evolution of the central Levant domain (Lebanon) since Mesozoic time. Geol Soc Lond Spec Publ 341:245–268

    Google Scholar 

  • Horowitz A (1973) Development of the Hula basin. Isr J Earth Sci 22:107–139

    Google Scholar 

  • Horowitz A (1987) Palynological evidence for the age and rate of sedimentation along the Dead Sea rift, and structural implications. Tectonophysics 141:107–115

    Google Scholar 

  • Horowitz A, Horowitz M (1985) Subsurface late Cenozoic palynostratigraphy of the Hula Basin. Pollen Spores 27:365–390

    Google Scholar 

  • Hubert-Ferrari A, King G, Van DerWoerd J, Villa I, Altunel E, Armijo R (2009) Long-term evolution of the North Anatolian Fault: new constraints from its Eastern termination. Geol Soc Lond Spec Publ 311:133–154

    Google Scholar 

  • Hughes GW, Perincek D, Grainger DJ, Abu-Bshait AJ, Jared ARM (1999) Lithostratigraphy and depositional history of part of the Midyan region, northwestern Saudi Arabia. GeoArabia 4:503–542

    Google Scholar 

  • Hurwitz S, Garfunkel Z, Ben-Gai Y, Reznikov M, Rotstein Y, Gvirtzman H (2002) The tectonic framework of a complex pull-apart basin: seismic reflection observations in the northern Kinarot-Beit-Shean Basin, Dead Sea Transform. Tectonophysics 359:289–306

    Google Scholar 

  • Jennings CW, compiler (1973) State of California, fault and geologic map, scale 1:750 000. California Division of Mines Geology, Sacramento

    Google Scholar 

  • Joffe S, Garfunkel Z (1987) The plate kinematics of the circum Red Sea – A reevaluation. Tectonophysics 141:5–22

    Google Scholar 

  • Karabacak V, Altunel E, Meghraoui M, Akyüz HS (2010) Field evidences from northern Dead Sea Fault Zone (South Turkey): new findings for the initiation age and slip rates. Tectonophysics 480:172–182

    Google Scholar 

  • Karig DE, Kozlu H (1990) Late-Palaeogene-Neogene evolution of the triple junction region near Maras, south-central turkey. J Geol Soc Lond 147:1023–1034

    Google Scholar 

  • Kashai EL, Crocker PF (1987) Structural geometry and evolution of the Dead Sea-Jordan rift system as deduced from new subsurface data. Tectonophysics 141:33–60

    Google Scholar 

  • Khair K (2001) Geomorphology and seismicity of the Roum fault as one of the active branches of the Dead Sea fault system in Lebanon. J Geophys Res 106:4233–4245

    Google Scholar 

  • Kopp ML, Leonov YG (2000) Tectonics. In: Leonov YG (ed) Outline of geology of Syria, Russ Acad Sci Geol Inst Trans 526, pp 7–104, Nauka, Moscow (in Russian)

    Google Scholar 

  • Krasheninnikov VA (2005) F: Neogeve. In: Krasheninnikov VA, Hall JK, Hirshc F, Benjamini H, Flexer A (eds) Geological framework of the Levant, V.1 Cyprus and Syria. Historic al Productioin-Hall, Jerusalem, pp 343–392

    Google Scholar 

  • Larsen BD, Ben-Avraham Z, Shulman H (2002) Fault and salt tectonics in the southern Dead Sea basin. Tectonophysics 346:71–90

    Google Scholar 

  • Lazar M, Ben-Avraham Z, Schattner U (2006) Formation of sequential basins along a strike-slip fault – Geophysical observations from the Dead Sea basin. Tectonophysics 421:53–69

    Google Scholar 

  • Le Beon M, Klinger Y, Amrat AQ, Agnon A, Dorbath L, Baer G, Ruegg JC, Charade O, Mayyas O (2008) Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. J Geophys Res 113:B11403. doi:10.1029/2007JB005280

    Google Scholar 

  • Le Pichon X, Kreemer C (2010) The Miocene to present kinematic evolution of the eastern Mediterranean and Middle East and its implication for dynamics. Ann Rev Earth Planet Sci 38:323–351

    Google Scholar 

  • Le Pichon X, Gaulier JM (1988) The rotation of Arabia and the Levant fault system. Tectonophysics 153:271–294

    Google Scholar 

  • Le Pichon X, Bergerat F, Roulet MJ (1988) Plate kinematics and tectonics leading to the Alpine belt formation. A new analysis. Geol Soc Am Spec Pap 218:111–131

    Google Scholar 

  • Le Pichon X, Francheteau J, Bonin J (1973) Plate tectonics. Elsevier, Amsterdam 303 p

    Google Scholar 

  • Mahmoud Y, Masson F, Meghraoui M, Cakir Z, Alchalbi A, Yavasoglu H, Yönlü O, Daoud M, Ergintav S, Inan S (2013) Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. J Geodyn 67:30–39

    Google Scholar 

  • Mann P, Hempton MR, Bradley DC, Burke K (1983) Development of pull-apart basins. J Geol 91:529–554

    Google Scholar 

  • Marco S, Rockwell TK, Heimann A, Frieslander U, Agnon A (2005) Late Holocene activity of the Dead Sea Transform revealed in 3D paleoseismic trenches on the Jordan Gorge segment. Earth Planet Sci Lett 234:189–205

    Google Scholar 

  • Marcus E, Slager J (1986) The sedimentary-magmatic sequences of Zemah-1 well (Dead Sea rift, Israel) and its emplacement in time and space. Isr J Earth Sci 34:1–10

    Google Scholar 

  • Mart Y, Hall JK (1984) Structural trends in the northern Red Sea. J Geophys Res 89:11352–11364

    Google Scholar 

  • Matmon A, Wdowinski S, Hall JK (2003) Morphological and structural relations in the Galilee extensional domain, northern Israel. Tectonophysics 371:223–241

    Google Scholar 

  • McKenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and East Africa. Nature 224:125–133

    Google Scholar 

  • Mechie J, Abu-Ayyash K, Ben-Avraham Z, El-Kelani R, Qabbani I, Weber M, DESIRE Group (2009) Crustal structure of the southern Dead Sea basin derived from DESIRE wide-angle seismic data. Geophys J Int 78:457–478. doi:10.1111/j.1365-246X.2009.04161.x

    Google Scholar 

  • Meghraoui M, Gomez F, Sbeinati R, Van der Voerd J, Mouty M, Darkal A, Radan Y, Layyous I, Najjar HM, Darawcheh R, Hijazi F, Al-Ghazzi R, Barazangi M (2003) Evidence for 830 years of seismic quiescence from paleoseismology, archeoseismology and historical seismicity along the Dead Sea fault in Syria. Earth Planet Sci Lett 210:35–52

    Google Scholar 

  • Meiler M, Reshef M, Shulman H (2011) Seismic depth-domain stratigraphic classification of the Golan Heights, central Dead Sea Fault. Tectopnophysics 510:354–369

    Google Scholar 

  • Michelson H, Lipson-Benitah S (1986) The litho- and biostratigraphy of the southern Golan Heights. Isr J Earth Sci 35:221–240

    Google Scholar 

  • Mittlefehldt D, Slager Y (1986) Petrology of the baslats and gabbros from the Zemah-1 drill hole, Jordan rift valley. Isr J Earth Sci 35:10–22

    Google Scholar 

  • Mouty M, Delaloye M, Fontignie D, Piskin O, Wagner JJ (1992) The volcanic activity in Syria and Lebanon between Jurassic and Actual. Schwietz Mineralog Petrogt Mitt 72:91–105

    Google Scholar 

  • Neev D, Hall JK (1979) Geophysical investigations in the Dead Sea. Sediment Geol 23:209–238

    Google Scholar 

  • Nemer T, Meghraoui M (2006) Evidence for coseismic ruptures along the Roum Fault (Lebanon) a possible source of the AD 1837 earthquake. J Struct Geol 28:1483–1495

    Google Scholar 

  • Nielsen C, Thybo H (2009) Lower crustal intrusions beneath the southern Baikal rift zone: evidence from full-waveform modelling of wide-angle seismic data. Tectonophysics 470:298–318

    Google Scholar 

  • Over S, Ozden S, Unlugenc UC, Huseyin Yilmaz H (2004) A synthesis: late Cenozoic stress field distribution at northeastern corner of the Eastern Mediterranean, SE Turkey. Compt Rendus Geosci 336:93–103

    Google Scholar 

  • Papazachos BC, Papaioannou CA (1999) Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics 308:193–204

    Google Scholar 

  • Perinçek D, Çemen I (1990) The structural relationship between the East Anatolian and Dead Sea fault zones in southeastern Turkey. Tectonophysics 172:331–340

    Google Scholar 

  • Petrunin A, Sobolev SV (2006) What controls thickness of sediments and lithospheric deformation at a pull-apart basin? Geology 34:389–392

    Google Scholar 

  • Picard L (1943) Structure and evolution of Palestine, Bulletin of the Geology Department, Hebrew University. Geology Department, Hebrew University, Jerusalem, 187 p

    Google Scholar 

  • Picard L, Baida U (1966) Geological report on the Lower Pleistocene deposits of the Ubeidiya excavations. Isr Acad Sci Hum Proc 4:1–16

    Google Scholar 

  • Ponikarov VP (1964) Chief editor: the geologic map of Syria, Scale 1:1 000 000. Dept Geol Min Res Syria

    Google Scholar 

  • Ponikarov VP, Kazmin VG, Kozlov VV, Krasheninnikov VA, Mikhailov IA, Razvlyaev AV, Soulidi-Kondratyev ED, Uflyand SK, Faradzhev VA (1969) Geology and mineral resources of foreign countries: Syria. Moscow, 216 p (in Russian)

    Google Scholar 

  • Quennell AM (1959) Tectonics of the Dead Sea rift. 20th Int Geol Cong (1956), Assoc Afr Geol Surv pp 385–405

    Google Scholar 

  • Reilinger R, McClusky S (2011) Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979

    Google Scholar 

  • Reilinger R, 24 others (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. doi:10.1029/2005JB004051

  • Renouard G (1955) Oil prospects of Lebanon. Am Assoc Petrol Geol Bull 39:2125–2169

    Google Scholar 

  • Reznikov M, Ben-Avraham Z, Garfunkel Z, Gvirtzman H, Rotstein Y (2004) Structural and Stratigraphic framework of Lake Kinneret. Isr J Earth Sci 53:131–149

    Google Scholar 

  • Robertson AHF (2001a) Mesozoic-Tertiary tectonic evolution of the Easternmost Mediterranean area: integration of marine and land evidence. Proc ODP Sci Results 160:723–782

    Google Scholar 

  • Robertson AHF (2001b) Geological evolution of Cyprus, onshore and offshore evidence. In: Malpas J, Xenophontos C, Panayides A (eds) Proceedings of 3rd international conference on the geology of the eastern Mediterranean. Geological Survey Department, Nicosia, pp 11–44

    Google Scholar 

  • Robertson AHF, Ünlügenç U, İnan N, Tasli K (2004) Missis-Andirin Complex: mélange formation related to closure and collision of the south-Tethys, in South Turkey. J Asian Earth Sci 22:413–453

    Google Scholar 

  • Roeser HA (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahrb D13:131–153

    Google Scholar 

  • Rojay B, Heimann A, Toprak V (2001) Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia, turkey): the transition zone between the Dead Sea transform and the East Anatolian fault zone. Geodin Acta 14:197–212

    Google Scholar 

  • Ron H (1987) Deformation along the Yammouneh, the restraining bend of the Dead Sea transform: paleomagnetic data and kinematic implications. Tectonics 9:1421–1432

    Google Scholar 

  • Ron H, Freund R, Garfunkel Z, Nur A (1984) Block rotation by strike-slip faulting: structural and paleomagnetic evidence. J Geophys Res 89:6256–6270

    Google Scholar 

  • Rotstein Y, Bartov Y (1989) Seismic reflection across a continental transform: an example from a convergent segment of the Dead Sea rift. J Geophys Res 94:2902–2912

    Google Scholar 

  • Rotstein Y, Bartov Y, Frieslander U (1992) Evidence for local shifting of the main fault and changes in the structural setting, Kinnarot Basin, Dead Sea transform. Geology 20:251–254

    Google Scholar 

  • Rukieh M, Trifonov VG, Dodonov AE, Minini H, Ammara O, Ivanova TP, Zaza T, Yusef A, Al-Shara M, Jobaili Y (2005) Neotectonic map of Syria and some aspects of Late Cenozoic evolution of the northwestern boundary zone of the Arabian plate. J Geodyn 40:235–256

    Google Scholar 

  • Rybakov M, Fleischer L, Ten Brink U (2003) The Hula valley subsurface structure inferred from gravity data. Isr J Earth Sci 52:113–122

    Google Scholar 

  • Ryberg T, Weber M, Garfunkel Z, Bartov Y (2007) The shallow velocity structure across the Dead Sea Transform fault, Arava Valley, from seismic data. J Geophys Res 112:B08307. doi:10.1029/2006JB004563

    Google Scholar 

  • Sadeh M, Hamiel Y, Bock Y, Fang P, Wdowinski S (2012) Crustal deformation along the Dead Sea Transform and the Carmel Fault inferred from GPS measurements. J Geophys Res 117:B08410. doi:10.1029/2012JB009241

    Google Scholar 

  • Saint-Marc P (1974) Etude stratigraphiqueet micropaleontologique de l’Albien, du Cenomanien et du Turonien du Liban. Notes et Memoirs de Moyen Orient 8:8–342

    Google Scholar 

  • Şaroĝlu F, Emre O, Kuşçu I (1992) The East Anatolian fault zone in Turkey. Ann Tecton Supplement to 6:99–125

    Google Scholar 

  • Schattner U, Weinberger R (2008) A mid-Pleistocene deformation transition in the Hula basin, northern Israel: implications for the tectonic evolution of the Dead Sea Fault. Geochem Geophys Geosys 9, 18 p. doi:10.2029/2007GC001937

  • Schattner U, Ben-Avraham Z, Lazar M, Huebscher C (2006) Tectonic isolation of the Levant basin offshore Galilee-Lebanon – Effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean. J Struct Geol 28:2049–2066

    Google Scholar 

  • Schulman N (1962) The geology of the central Jordan Valley. Dissertation, Hebrew University, Jerusalem (in Hebrew)

    Google Scholar 

  • Schütz F, Norden B, Forster A (2012) Thermal properties of sediments in southern Israel: a comprehensive data set for heat flow and geothermal energy studies heat flow. Basin Res 24:357–376

    Google Scholar 

  • Searle MP (1994) Structure of the intraplate Eastern Plamyride fold belt, Syria. Geol Soc Am Bull 106:1332–1350

    Google Scholar 

  • Segev A (1984) Lithostratigraphy and paleogeography of the marine Cambrian sequence in southern Israel and southwestern Jordan. Isr J Earth Sci 33:26–33

    Google Scholar 

  • Segev A (2009) 40Ar/39Ar and K-Ar geochronology of Berriasian-Hauterivian and Cenomanian tectonomagmatic events in northern Israel: implications for regional stratigraphy. Cretac Res 30:810–828

    Google Scholar 

  • Senel M (ed) (2002) The Geological map of Turkey, Sheet Hatay, 1:500 000. Direct Min Res Expl (MTA), Ankara

    Google Scholar 

  • Şengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Gorur N, Saroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape; Turkey as a case study. Soc Econ Paleontol Mineral, Spec Publ 37:227–264

    Google Scholar 

  • Şengör AMC, Görür N, Şaroĝlu F (2005) Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Soc Econ Plaeont Minerol Spec Publ 37:227–264

    Google Scholar 

  • Seyrek A, Demir T, Pringle MS, Yurtmen S, Westaway RWC, Beck A, Rowbotham G (2007) Kinematics of the Amanos Fault, southern Turkey, from Ar/Ar dating of offset Pleistocene basalt flows: transpression between the African and Arabian plates. Geol Soc Lond Spec Publ 290:255–284. doi:10.1144/SP290

    Google Scholar 

  • Shaliv G (1991) Stages in the tectonic and volcanic history of the Neogene basin in the Lower Galilee and the Valleys. Geol Surv Isr Report GSI/11/91, 100 p. (in Hebrew, Eng abs)

    Google Scholar 

  • Sharkov EV (2000) Mesozoic and Cenozoic basaltic magmatism. In: Leonov, Yu G (eds) Outline of Geology of Syria. Rus Acad Sci, Geol Inst Trans, 526. pp 177–200. Nauka, Moscow (in Russian)

    Google Scholar 

  • Shulman H, Reshef M, Ben-Avraham Z (2004) The structure of the Golan Heights and its tectonic linkage to the Dead Sea transform and the Palmyrides folding. Isr J Earth Sci 53:225–238

    Google Scholar 

  • Smit J, Brun JP, Cloetingh S, Ben-Avraham Z (2010) The rift-like structure and asymmetry of the Dead Sea Fault. Earth Planet Sci Lett 290:74–82

    Google Scholar 

  • Smit J, Brun JP, Cloetingh S, Ben-Avraham Z (2011) The rift-like structure and asymmetry of the Dead Sea Fault. Earth Planet Sci Lett 290:74–82

    Google Scholar 

  • Sneh A, Weinberger R (2003) Geology of the Metulla quadrangle, northern Israel: implications for the offset along the Dead Sea rift. Isr J Earth Sci 52:123–138

    Google Scholar 

  • Sobolev SV, Petrunin A, Garfunkel Z, Babeyko AY (2005) Thermo-mechanical model of the Dead Sea transform. Earth Planet Sci Lett 238:78–95

    Google Scholar 

  • Steinitz G, Bartov Y (1991) The Miocene-Pliocene history of the Dead Sea segment of the rift in light of K-Ar ages of basalts. Isr J Earth Sci 40:199–208

    Google Scholar 

  • Steinitz G, Bartov Y, Eyal M, Eyal Y (1981) K-Ar age determination of Tertiary magmatism along the western margin of the Gulf of Elat. Geol Surv Isr Curr Res 1980:27–29

    Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the neoproterozoic E African Orogen: implications for the consolidation of Godwanaland. Ann Rev Earth Planet Sci 22:319–351

    Google Scholar 

  • Suess E (1891) Die Brüche des östlichen Africa. Denkschrifte Akademie Wissenschaft Wien 58:555–584

    Google Scholar 

  • Tatar O, Piper JDA, Gürsoy H, Heimann A, Koçulut F (2004) Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian fault zone, southern Turkey: a palaeomagnetic study of the Karasu Rift volcanism. Tectonophysics 385:17–43

    Google Scholar 

  • Ten Brink US, Ben-Avraham Z (1989) The anatomy of a pull-apart basin: seismic reflection observations of the Dead Sea basin. Tectonics 8:333–350

    Google Scholar 

  • Ten Brink US, Flores CH (2012) Geometry and subsidence history of the Dead Sea basin: a case for fluid-induced mid-crustal shear zone? J Geophys Res 117:B01406. doi:10.1029/2011JB008711

    Google Scholar 

  • Ten Brink US, Ben-Avraham Z, Bell RE, Hassouneh M, Coleman DF, Andersen G, Tibor G, Coakley B (1993) Structure of the Dead Sea pull-apart basin from gravity analysis. J Geophys Res 98:21877–21894

    Google Scholar 

  • Ten Brink US, Rybakov M, Al Zoubi AS, Hassouneh M, Frieslander U, Batayneh AT, Goldschmidt V, Daoud MN, Rotstein Y, Hall JK (1999) Anatomy of the Dead Sea transform: does it reflect continuous changes in plate motion? Geology 27:887–890. doi:10.1130/0091-7613

    Google Scholar 

  • Ten Brink US, Al Zoubi AS, Flores CH, Rotsterin Y, Qabbani I, Harder SH, Keller RG (2006) Seismic imaging of deep low velocity zone beneath the Dead Sea basin and transform faults: implications for strain localization and crustal rigidity. Geophys Res Lett 33:L24314. doi:10.1029/2006GL027890

    Google Scholar 

  • Trifonov VG, Trubikhin VM, Adjamian J, Jallad Z, El-Khair Y, Ayad H (1991) The Levant fault zone in northwestern Syria. Geotectonics 2:63–75

    Google Scholar 

  • Vidal N, Alvarez-Marron J, Klaeschen D (2000) Internal configuration of the Levantine Basin from seismic reflection data (Eastern Mediterranean). Earth Planet Sci Lett 180:77–89

    Google Scholar 

  • Walley CD (1983) The paleoecology of the Callovian-Oxfordian strata of Majdal Shams (Syria) and its implications for Levantine palaeogeography and tectonics. Palaeogeogr Palaeoclim Palaeoecol 42:323–340

    Google Scholar 

  • Walley CD (1988) A braided strike-slip model for the northern continuation of the Dead Sea fault and its implications for Levantine tectonics. Tectonophysics 1456:63–72

    Google Scholar 

  • Walley CD (1998) Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 298:37–62

    Google Scholar 

  • Weber M, DESERT Working Group (2004) The crustal structure of the Dead Sea transform. Geophys J Int 156:655–681. doi:10.1111/j.-1365/246X-2004.020143.x

    Google Scholar 

  • Weber M, DESERT working Group (2009) Anatomy of the Dead Sea transform from lithospheric to microscopic scale. Rev Geophys 47:RG2002. doi:10.1029/2008RG000264

    Google Scholar 

  • Weinberger R, Sneh A, Harlavan Y (2003) The occurrence of Middle-Miocene volcanism at Mount Hermon, northern Israel. Isr J Earth Sci 52:179–184

    Google Scholar 

  • Weinberger R, Gross MR, Sneh A (2009) Evolving deformation along a transform plate boundary: example from the Dead Sea Fault in northern Israel. Tectonics 28:TC5005. doi:10.1029/2008TC002316

    Google Scholar 

  • Weinberger R, Schattner U, Medvedev B, Frieslander U, Sneh A, Harlavan Y, Gross MR (2011) Convergent strike–slip across the Dead Sea Fault in northern Israel, imaged by high-resolution seismic reflection data. Isr J Earth Sci 58:203–216. doi:10.1560/IJES.58.3-4.203

    Google Scholar 

  • Weinstein Y (2012) Transform faults as lithospheric boundaries, an example from the Dead Sea Transform. J Geodyn 54:21–28

    Google Scholar 

  • Westaway R (2003) Kinematics of the Middle East and Eastern Mediterranean. Turk J Earth Sci 12:5–46

    Google Scholar 

  • Westaway R, Arger J (1996) Gölbaşi basin, southeastern Turkey: a complex discontinuity in a major strike-slip fault zone. J Geol Soc Lond 153:729–744

    Google Scholar 

  • Westaway R, Demir T, Seyrek A, Beck A (2006) Kinematics of active left-lateral faulting in SE Turkey from offset Pleistocene river gorges: improved constraint on the rate and history of relative motion between the Turkish and Arabian plates. J Geol Soc Lond 163:149–164. doi:10.1144/0016-764905-030

    Google Scholar 

  • Wilson JT (1965) A new class of faults and their bearing on continental drift. Nature 207:343–347

    Google Scholar 

  • Wu JE, Ken McClay K, Whitehouse A, Dooley T (2009) 4D analogue modelling of transtensional pull-apart basins. Mar Pet Geol 6:1608–1623

    Google Scholar 

  • Yilmaz Y (1993) New evidence and model on the evolution of the southeast Anatolian orogen. Geol Soc Am Bull 105:251–271

    Google Scholar 

  • Zak I (1967) The geology of Mount Sedom. Thesis Hebrew University of Jrusalem, 208p (in Hebrew, English abstract)

    Google Scholar 

  • Zanchi A, Crosta GB, Darkal AN (2002) Paleostress analyses in NW Syria: constraints on the Cenozoic evolution of the northwestern margin of the Arabian plate. Tectonophysics 357:255–278

    Google Scholar 

Download references

Acknowledgements

I am very grateful to X. Le Pichon and A. Sagy for their helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Garfunkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garfunkel, Z. (2014). Lateral Motion and Deformation Along the Dead Sea Transform. In: Garfunkel, Z., Ben-Avraham, Z., Kagan, E. (eds) Dead Sea Transform Fault System: Reviews. Modern Approaches in Solid Earth Sciences, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8872-4_5

Download citation

Publish with us

Policies and ethics