Skip to main content

The Seismogenic Thickness in the Dead Sea Area

  • Chapter
  • First Online:

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 6))

Abstract

Four independent distributions of seismicity in the Dead Sea area underline the occurrence of lower-crustal seismic activity down-to at least 27 km and possibly as deep as 33.6 km. From these distributions, the seismogenic thickness is estimated to be 28.4 ± 2.2 km. The existence of a seismogenic zone extending deep into the lower crust is consistent with an average heat flow of only 40–45 mWm−2 over most regions of Israel, and around 40 mWm−2 in the Dead Sea area in particular. The seismogenic thickness in the Dead Sea area is thus nearly twice the average seismogenic thickness of 15 km observed in southern California. The fact that some seismic activity occurs down-to the Moho in the Dead Sea area suggests that the state of fully plastic deformation is probably not reached in the crust under the seismogenic zone.

The ISC – GEM (Storchak et al. 2013) relocation of the MW 6.3 earthquake of 11 July 1927 from regional and teleseismic instrumental data resulted in a well-constrained epicenter located in the Jordan Valley, not far from the epicenter reported in the 1927 bulletin of the ISS. Since the causative fault of this earthquake is likely to be the Dead Sea transform, we propose a preferred epicenter at 31.92°N–35.56°E. The focal depth determined instrumentally by the ISC – GEM relocation is 15 ± 6 km, and we found an average macroseismic depth of 21.5 ± 2.5 km. Our results as a whole underline also the seismogenic importance of the transition between the upper and the lower crust in the Dead Sea area for moderate and probably also for large earthquakes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou Elenean K, Aldamegh K, Zharan H, Hussein H (2009) Regional waveform inversion of 2004 February 11 and 2007 February 09 Dead Sea earthquakes. Geophys J Int 176:185–199

    Article  Google Scholar 

  • Abou Karaki N (1999) Location of the earthquake of Palestine 11-7-1927: a critical assessment, vol 8. Abhath al-Yarmouk, Basic sciences and engineering series, 1. pp 9–34 (In Arabic, English Abstract)

    Google Scholar 

  • Aldersons F (2004) Toward a three-dimensional crustal structure of the Dead Sea region from local earthquake tomography. PhD thesis, Tel-Aviv University, p 123

    Google Scholar 

  • Aldersons F, Ben-Avraham Z, Hofstetter A, Kissling E, Al-Yazjeen T (2003) Lower-crustal strength under the Dead Sea Basin from local earthquake data and rheological modeling. Earth Planet Sci Lett 214:129–142

    Article  Google Scholar 

  • Al-Tarazi E, Sandvol E, Gomez F (2006) The February 11, 2004 Dead Sea earthquake ML = 5.2 in Jordan and its tectonic implication. Tectonophysics 422:149–158

    Article  Google Scholar 

  • Ambraseys N (2006) Comparison of frequency of occurrence of earthquakes with slip rates from long‐term seismicity data: the cases of Gulf of Corinth, Sea of Marmara and Dead Sea Fault Zone. Geophys J Int 165(2):516–526

    Article  Google Scholar 

  • Ambraseys N, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159(1):165–206

    Article  Google Scholar 

  • Avni R (1999) The 1927 Jericho earthquake – comprehensive macroseismic analysis based on contemporary sources. PhD thesis, Ben-Gurion University of the Negev, vol 1, 64 p, vol 2, p 139 (in Hebrew)

    Google Scholar 

  • Avni R, Bowman D, Shapira A, Nur A (2002) Erroneous interpretation of historical documents related to the epicenter of the 1927 Jericho earthquake in the Holy Land. J Seismol 6:469–476

    Article  Google Scholar 

  • Bakun WH (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull Seismol Soc Am 74(2):439–458

    Google Scholar 

  • Bakun WH (2006) Estimating locations and magnitudes of earthquakes in southern California from modified Mercalli intensities. Bull Seismol Soc Am 96(4A):1278–1295

    Article  Google Scholar 

  • Begin ZB, Steinitz G (2005) Temporal and spatial variations of microearthquake activity along the Dead Sea Fault, 1984–2002. Isr J Earth Sci 54:1–14

    Article  Google Scholar 

  • Ben-Avraham Z (1997) Geophysical framework of the Dead Sea: structure and tectonics. In: Niemi TM, Ben-Avraham Z, Gat JR (eds) The Dead Sea: the Lake and its settings, vol 36. Oxford University Press, New York, pp 22–35

    Google Scholar 

  • Ben-Avraham Z (2014) Chapter1: Geophysical studies of the crustal structure along the Southern Dead sea fault. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) Dead Sea Transform Fault System: Reviews. Springer, Dordrecht, pp 1–27

    Google Scholar 

  • Ben-Avraham Z, Schubert G (2006) Deep “drop down” basin in the southern Dead Sea. Earth Planet Sci Lett 251:254–263

    Article  Google Scholar 

  • Ben-Avraham Z, Von Herzen RP (1987) Heat flow and continental breakup: the Gulf of Elat (Aqaba). J Geophys Res 92:1407–1416

    Article  Google Scholar 

  • Ben-Avraham Z, Hänel R, Villinger H (1978) Heat flow through the Dead Sea rift. Mar Geol 28:253–269

    Article  Google Scholar 

  • Ben-Avraham Z, Lyakhovsky V, Schubert G (2010) Drop-down formation of deep basins along the Dead Sea and other strike-slip fault systems. Geophys J Int 181:185–197

    Article  Google Scholar 

  • Ben-Menahem A, Singh SJ (2000) Seismic waves and sources, 2nd edn. Dover Publications, Mineola, p 1102

    Google Scholar 

  • Ben-Menahem A, Nur A, Vered M (1976) Tectonics, seismicity and structure of the Afro-Eurasian junction – The breaking of an incoherent plate. Phys Earth Planet Inter 12:1–50

    Article  Google Scholar 

  • Berloty SJ (1927) Annales de l’Observatoire de Ksara (Liban), Observations (Section Séismologique) – notice spéciale sur le tremblement de terre de Palestine, 11 juillet 1927, 62–95

    Google Scholar 

  • Bondár I, Storchak D (2011) Improved location procedures at the International Seismological Centre. Geophys J Int 186:1220–1244

    Article  Google Scholar 

  • Bondár I, Engdahl ER, Villaseñor A, Storchak D (2012) ISC-GEM: global instrumental earthquake catalogue (1900–2009): I. Location and seismicity patterns. AGU Fall Meeting, San-Francisco, USA

    Google Scholar 

  • Braeuer B, Asch G, Hofstetter R, Haberland C, Jaser D, El-Kelani R, Weber M (2012a) Microseismicity distribution in the southern Dead Sea basin and its implications on the structure of the basin. Geophys J Int 188:873–878

    Article  Google Scholar 

  • Braeuer B, Asch G, Hofstetter R, Haberland C, Jaser D, El-Kelani R, Weber M (2012b) High-resolution local earthquake tomography of the southern Dead Sea area. Geophys J Int 191:881–897

    Google Scholar 

  • Braslavski J (1938) The earthquake that blocked the Jordan in 1546. Zion 3:323–336 (in Hebrew)

    Google Scholar 

  • Das S, Scholz CH (1983) Why large earthquakes do not nucleate at shallow depths. Nature 305:621–623

    Article  Google Scholar 

  • Di Giacomo D, Bondár I, Lee WHK, Engdahl ER, Bormann P, Storchak D (2012) ISC-GEM: global instrumental earthquake catalogue (1900–2009): II. Earthquake magnitudes. AGU Fall Meeting, San-Francisco, USA

    Google Scholar 

  • Di Stefano R, Aldersons F, Kissling E, Baccheschi P, Chiarabba C, Giardini D (2006) Automatic seismic phase picking and consistent observation error assessment: application to the Italian seismicity. Geophys J Int 165:121–134

    Article  Google Scholar 

  • Di Stefano R, Kissling E, Chiarabba C, Amato A, Giardini D (2009) Shallow subduction beneath Italy: three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-quality P wave arrival times. J Geophys Res 114, B05305. doi:10.1029/2008JB005641

  • Diehl T, Kissling E, Husen S, Aldersons F (2009) Consistent phase picking for regional tomography models: application to the greater Alpine region. Geophys J Int 176:542–554

    Article  Google Scholar 

  • Eckstein Y, Simmons G (1978) Measurements and interpretation of terrestrial heat flow in Israel. Geothermics 6:117–142

    Article  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743

    Google Scholar 

  • Erickson AJ (1970) The measurement and interpretation of heat flow in the Mediterranean and Black Sea. PhD thesis, Massachusetts Institute of Technology, p 433

    Google Scholar 

  • Förster A, Förster H, Masarweh R, Masri A, Tarawneh K (2007) The surface heat flow of the Arabian Shield in Jordan. J Asian Earth Sci 30:271–284

    Article  Google Scholar 

  • Förster H-J, Förster A, Oberhänsli R, Stromeyer D (2010) Lithospheric composition and thermal structure of the Arabian Shield in Jordan. Tectonophysics 481:29–37

    Article  Google Scholar 

  • Garstang J (1931) Joshua judges. Constable and Co., London, pp 134–139

    Google Scholar 

  • Ginzburg A, Makris J, Fuchs K, Prodehl C (1981) The structure of the crust and upper mantle in the Dead Sea rift. Tectonophysics 80:109–119

    Article  Google Scholar 

  • Godey S, Bossu R, Guilbert J, Mazet-Roux G (2006) The Euro-Mediterranean bulletin: a comprehensive seismological bulletin at regional scale. Seismol Res Lett 77(4):460–474

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth. Princeton University Press, Princeton, p 310

    Google Scholar 

  • Hagiwara T (1964) Brief description of the project proposed by the earthquake prediction research group of Japan. In: Proceedings of U.S.-Japan conference related earthquake prediction problem, Tokyo, pp 10–12

    Google Scholar 

  • Hofstetter R, Gitterman Y, Pinsky V, Kraeva N, Feldman L (2008) Seismological observations of the northern Dead Sea basin earthquake on 11 February 2004 and its associated activity. Isr J Earth Sci 57:101–124

    Article  Google Scholar 

  • Hofstetter R, Dorbath C, Calò M (2012) Crustal structure of the Dead Sea Basin from local earthquake tomography. Geophys J Int 189:554–568

    Article  Google Scholar 

  • International Seismological Centre (2001) Bulletin disks 1–9 [CD-ROM], International Seismological Centre, Thatcham, UK

    Google Scholar 

  • International Seismological Centre (2011) On-line Bulletin, http://www.isc.ac.uk. International Seismological Centre, Thatcham, UK

  • International Seismological Summary (1927) University of Oxford, p 472

    Google Scholar 

  • Kennett B, Engdahl E (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 122:429–465

    Article  Google Scholar 

  • Kissling E (1995) Velest user’s guide. Internal report 26, Institute of Geophysics, ETH Zürich, Switzerland

    Google Scholar 

  • Kissling E, Ellsworth WL, EberhartPhillips D, Kradolfer U (1994) Initial reference models in local earthquake tomography. J Geophys Res 99:19635–19646

    Article  Google Scholar 

  • Koulakov I, Sobolev S (2006) Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys J Int 164:218–235

    Article  Google Scholar 

  • Krige D (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 6:119–139

    Google Scholar 

  • Küperkoch L, Meier T, Diehl T (2012) Automated event and phase identification. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–52. doi:10.2312/GFZ.NMSOP-2_ch16

    Google Scholar 

  • Lay T, Kanamori H, Ruff L (1982) The asperity model and the nature of large subduction zone earthquakes. Earthq Predict Res 1:3–71

    Google Scholar 

  • Lazar M (2004) Tectonic processes along the northern edges of pull-apart basins in the Dead Sea rift: a case study from the northern Dead Sea. PhD thesis, Tel-Aviv University, p 156

    Google Scholar 

  • Le Béon M, Klinger Y, Amrat AQ, Agnon A, Dorbath L, Baer G, Ruegg J-C, Charade O, Mayyas O (2008) Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. J Geophys Res Solid Earth 113:B11403. doi:10.1029/2007JB005280

    Article  Google Scholar 

  • Lee W, Stewart S (1981) Principles and applications of microearthquake networks. Academic, New York, p 293

    Google Scholar 

  • Li C, van der Hilst R, Meltzer A, Engdahl E (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274:157–168

    Article  Google Scholar 

  • Magistrale H, Zhou H (1996) Lithologic control of the depth of earthquakes in southern California. Science 273:639–642

    Article  Google Scholar 

  • Mai PM, Spudich P, Boatwright P (2005) Hypocenter locations in finite-source rupture models. Bull Seismol Soc Am 95(3):965–980

    Article  Google Scholar 

  • Makris J, Tsironidis J, Richter H (1991) Heat flow density distribution in the Red Sea. Tectonophysics 198:383–393

    Article  Google Scholar 

  • Martínez F, Cochran J (1989) Geothermal measurements in the northern Red Sea: implications for lithospheric thermal structure and mode of extension during continental rifting. J Geophys Res 94:12239–12265

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • McGuire JJ, Zhao L, Jordan TH (2002) Predominance of unilateral rupture for a global catalog of large earthquakes. Bull Seismol Soc Am 92(8):3309–3317

    Article  Google Scholar 

  • Mechie J, Abu‐Ayyash K, Ben‐Avraham Z, El‐Kelani R, Qabbani I, Weber M (2009) Crustal structure of the southern Dead Sea basin derived from project DESIRE wide‐angle seismic data. Geophys J Int 178(1):457–478

    Article  Google Scholar 

  • Medvedev S (1962) Engineering seismology (English translation from the Russian edition). Israel Program for Scientific Translations, Jerusalem, 1965, p 260

    Google Scholar 

  • Medvedev SV, Sponheuer W (1969) Scale of seismic intensity. In: Proceedings of fourth World Conference of the Earthquake Engineering. Chilean Association on Seismology and Earthquake Engineering, Santiago, pp 143–153

    Google Scholar 

  • Navon H (2011) Microseismic characterization of Lake Kinneret basin. M.Sc. thesis, Tel-Aviv University

    Google Scholar 

  • Nazareth J, Hauksson E (2004) The seismogenic thickness of the southern California crust. Bull Seismol Soc Am 94:940–960

    Article  Google Scholar 

  • Petrunin AG, Sobolev SV (2006) What controls thickness of sediments and lithospheric deformation at a pull-apart basin? Geology 34:389–392

    Article  Google Scholar 

  • Roded R (2012) Basal heat flow and hydrothermal regime at the Golan-Ajloun hydrological Basins. M.Sc. thesis, Ben-Gurion University

    Google Scholar 

  • Rothé E (1928) Annuaire de l’Institut de Physique du Globe 1927, deuxième partie: Séismologie, Bulletin du Bureau Central Séismologique Français, Université de Strasbourg, p 130

    Google Scholar 

  • Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature 337:251–253

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge, p 471

    Book  Google Scholar 

  • Shalev E, Lyakhovsky V, Yechieli Y (2007) Is advective heat transport significant at the Dead Sea basin? Geofluids 7:292–300

    Article  Google Scholar 

  • Shalev E, Lyakhovsky V, Weinstein Y, Ben-Avraham Z (2012) The thermal structure of Israel. Tectonophysics http://dx.doi.org/10.1016/j.tecto.2012.09.011

  • Shamir G (2006) The active structure of the Dead Sea depression. GSA Spec Pap 401:15–32

    Google Scholar 

  • Shapira A, Hofstetter A (2002) Seismic parameters of seismogenic zones. Appendix C In: Shapira A (2002) An updated map of peak ground acceleration for Israel Standard 413. Geophysical Institute of Israel report 592/230/02, p 74

    Google Scholar 

  • Shapira A, Avni R, Nur A (1993) A new estimate for the epicenter of the Jericho earthquake of 11 July 1927. Isr J Earth Sci 42:93–96

    Google Scholar 

  • Shebalin NV (1973) Macroseismic data as information on source parameters of large earthquakes. Phys Earth Planet Inter 6:316–323

    Article  Google Scholar 

  • Shebalin NV, Karnik V, Hadzievski D (1974) Balkan region – Catalogue of earthquakes, Atlas of isoseismal maps. UNDP – UNESCO Survey of Seismicity of Balkan Region. Skopje, Yugoslavia, p 366

    Google Scholar 

  • Sibson R (1982) Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull Seismol Soc Am 72:151–163

    Google Scholar 

  • Storchak DA, Di Giacomo D, Bondár I, Engdahl ER, Harris J, Lee WHK, Villaseñor A, Bormann P (2013) Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009). Seism Res Lett 84(5):810–815

    Article  Google Scholar 

  • Thurber CH (1984) SIMUL3. In: Engdahl ER (ed) Documentation of earthquake algorithms, Report SE-35. World Data Center A for Solid Earth Geophysics, Boulder, pp 15–17

    Google Scholar 

  • Valoroso L, Chiaraluce L, Piccinini D, Di Stefano R, Schaff D, Waldhauser F (2013) Radiography of a normal fault system by 64,000 high-precision earthquake locations: the 2009 L’Aquila (central Italy) case study. J Geophys Res Solid Earth 118:1156–1176

    Article  Google Scholar 

  • Vered M, Striem H (1977) A macroseismic study and the implications of structural damage of two recent major earthquakes in the Jordan rift. Bull Seismol Soc Am 67:1607–1613

    Google Scholar 

  • Waldhauser F (2001) HypoDD: a program to compute double-difference hypocenter locations, US Geological Survey open file report 01–113. U.S. Dept. of the Interior, U.S. Geological Survey, Menlo Park, California

    Google Scholar 

  • Waldhauser F, Ellsworth W (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368

    Article  Google Scholar 

  • Wells D, Coppersmith K (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wood HO (1921) A list of seismologic stations of the world, vol 2, Part 7, 15. The National Research Council of the National Academy of Sciences, pp 397–538

    Google Scholar 

  • Wood HO, Neumann F (1931) Modified Mercalli intensity scale of 1931. Bull Seismol Soc Am 21(4):277–283

    Google Scholar 

  • Zohar M, Marco S (2012) Re-estimating the epicenter of the 1927 Jericho earthquake using spatial distribution of intensity data. J Appl Geophys 82:19–29

    Article  Google Scholar 

Download references

Acknowledgements

We greatly thank I. Koulakov and B. Braeuer for providing the details of their distributions of seismicity in the Dead Sea region. We thank R. Hofstetter, D. Zakosky and L. Feldman for providing the GII seismograms of the MW 5.3 earthquake of 2004. We thank T. Al-Yazjeen, W. Olimat and B. Al-biss for providing the JSO seismograms of the MW 5.3 earthquake of 2004. Many thanks to D. Storchak, I. Bondár and D. Di Giacomo from the ISC for providing the details of the ISC-GEM relocation for the MW 6.3 earthquake of 1927. Thanks also to O. Heidbach and an anonymous reviewer for their criticism, and advice to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Aldersons .

Editor information

Editors and Affiliations

Appendix

Appendix

MW 6.3 Earthquake of 11 July 1927: Additional isoseismal maps (Figs. 3.15, 3.16, and 3.17)

Fig. 3.15
figure 15

Isoseismal map (MSK) of the earthquake of 11 July 1927 produced by kriging of Mode Intensities determined by Avni (1999), and published by Zohar and Marco (2012). ISS (1927): instrumental epicenter from ISS. SHA (1993): instrumental epicenter from Shapira et al. (1993). ISC-GEM: instrumental epicenter from ISC-GEM (Storchak et al. 2013). The area in red (MSK = IX) defines the macroseismic epicentral region (drawn by hand) according to this dataset. Israel Transverse Mercator (ITM) grid coordinates (km)

Fig. 3.16
figure 16

Isoseismal map (MSK) of the earthquake of 11 July 1927 produced by kriging of Max Intensities determined by Avni (1999), and published by Zohar and Marco (2012). ISS (1927): instrumental epicenter from ISS. SHA (1993): instrumental epicenter from Shapira et al. (1993). ISC-GEM: instrumental epicenter from ISC-GEM (Storchak et al. 2013). The area in red (MSK = IX) defines the macroseismic epicentral region (drawn by hand) according to this dataset. Israel Transverse Mercator (ITM) grid coordinates (km)

Fig. 3.17
figure 17

Isoseismal map (MSK) of the earthquake of 11 July 1927 produced by kriging of Modal Intensities determined by Avni (1999) and Corrected for site attributes (± 1 unit MSK) by Zohar and Marco (2012). ISS (1927): instrumental epicenter from ISS. SHA (1993): instrumental epicenter from Shapira et al. (1993). ISC-GEM: instrumental epicenter from ISC-GEM (Storchak et al. 2013). The area in red (MSK = VIII) defines the macroseismic epicentral region (drawn by hand) according to this dataset. The region in green defines the macroseismic epicentral region according to the regressions of Zohar and Marco (2012). Israel Transverse Mercator (ITM) grid coordinates (km)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aldersons, F., Ben-Avraham, Z. (2014). The Seismogenic Thickness in the Dead Sea Area. In: Garfunkel, Z., Ben-Avraham, Z., Kagan, E. (eds) Dead Sea Transform Fault System: Reviews. Modern Approaches in Solid Earth Sciences, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8872-4_3

Download citation

Publish with us

Policies and ethics