Skip to main content

Progress and Challenges in Biogeochemical Modeling of the Pacific Arctic Region

  • Chapter
  • First Online:
The Pacific Arctic Region

Abstract

At this early stage of modeling marine ecosystems and biogeochemical cycles in the Pacific Arctic Region (PAR), numerous challenges lie ahead. Observational data used for model development and validation remain sparse, especially across seasons and under a variety of environmental conditions. Field data are becoming more available, but at the same time PAR is rapidly changing. Biogeochemical models can provide the means to capture some of these changes. This study introduces and synthesizes ecosystem modeling in PAR by discussing differences in complexity and application of one-dimensional, regional, and global earth system models. Topics include the general structure of ecosystem models and specifics of the combined benthic, pelagic, and ice PAR ecosystems, the importance of model validation, model responses to climate influences (e.g. diminishing sea ice, ocean acidification), and the impacts of circulation and stratification changes on PAR ecosystems and biogeochemical cycling. Examples of modeling studies that help place the region within the context of the Pan-Arctic System are also discussed. We synthesize past and ongoing PAR biogeochemical modeling efforts and briefly touch on decision makers’ use of ecosystem models and on necessary future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen J, Somerfield P (2009) A multivariate approach to model skill assessment. J Mar Syst 76:83–94. doi:10.1016/j.jmarsys.2008.05.0

    Google Scholar 

  • Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4:521–544

    CAS  Google Scholar 

  • Arora V, Boer G, Christian J et al (2009) The effect of terrestrial photosynthesis down-regulation on the twentieth century carbon budget simulated with the CCCma earth system model. J Climate 22:6066–6088

    Google Scholar 

  • Arora V, Scinocca J, Boer G et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38, L05805. doi:10.1029/2010GL046270

    Google Scholar 

  • Arrigo K, Kremer J, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98:6929–6946

    CAS  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35, L19603. doi:10.1029/2008GL035028

    Google Scholar 

  • Ayers GP, Cainey JM (2007) The claw hypothesis: a review of the major developments. Environ Chem 4:366–374. doi:10.1071/EN07080

    CAS  Google Scholar 

  • Barcelos e Ramos J, MĂĽller M, Riebesell U (2010) Short-term response of the coccolithophore Emiliana huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences 7:177–186

    CAS  Google Scholar 

  • Bates N, Michaels A, Knap A (1996) Seasonal and interannual variability of the oceanic carbon dioxide system at the US’JGOFS Bermuda Atlantic time-series site. Deep Sea Res II 43(2–3):347–383. doi:10.1016/0967-0645(95)00093-3

    CAS  Google Scholar 

  • Bates N, Mathis J, Cooper L (2009) The effect of ocean acidification on biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean. J Geophys Res 114:C11,007. doi:10.1029/2008JC004862

  • Berline L, Spitz YH, Ashjian CJ, Campbell RG, Maslowski W, Moore SE (2008) Euphaussid transport in the western Arctic Ocean. Mar Ecol Prog Ser 360:163–178

    Google Scholar 

  • Bigg E, Leck C (2008) The composition of fragments of bubbles bursting at the ocean surface. J Geophys Res 113:D11209. doi:10.1029/2007JD009078

    Google Scholar 

  • Bluhm BA, Gradinger R (2008) Regional variability in food availability for Arctic marine mammals. Ecol Appl 18:577–596

    Google Scholar 

  • Brasseur P, Haus J (1990) Application of a three-dimensional variational inverse model to the analysis of ecohydrodynamic data in the Bering and Chukchi seas. J Mar Syst 1:383–401

    Google Scholar 

  • Cai W-J, Bates NR, Guo L, Anderson L et al (2014) Chapter 8: Carbon fluxes across boundaries in the Pacific Arctic region in a changing environment. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 199–222

    Google Scholar 

  • Campbell RG, Sherr EB, Ashijian CJ et al (2009) Mesoplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res II 56:1274–1289

    Google Scholar 

  • Carmack EC, Wassmann P (2006) Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477

    Google Scholar 

  • Carmack EC, Barber D, Christensen J et al (2006) Climate variability and physical forcing of the food webs and the carbon budget on pan-Arctic shelves. Prog Oceanogr 71:145–181

    Google Scholar 

  • Cheung W, Lam VW, Sarmiento J et al (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 68. doi:10.1111/j.1467-2979.2008.00315.x

  • Cheung W, Lam VW, Sarmiento J et al (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16:24–35. doi:10.1111/j.1365-2486.2009.01995.x

    Google Scholar 

  • Cheung W, Dunne J, Sarmiento J et al (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68:1008–1018

    Google Scholar 

  • Chierici M, Fransson A (2009) Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6(11):2421–2431

    CAS  Google Scholar 

  • Christian J, Arora V, Boer G et al (2010) The global carbon cycle in the Canadian Earth System Model (CanESM1): preindustrial control simulation. J Geophys Res 115. doi:10.1029/2008JG000920

  • Clement JL, Maslowski W, Cooper L, Grebmeier J, Walczowski W (2005) Ocean circulation and exchanges through the northern Bering Sea—1979–2001 model results. Deep Sea Res II 52:3509–3540

    Google Scholar 

  • Clement Kinney J, Maslowski W, Okkonen S (2009) On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea. Deep Sea Res II 56:1351–1362. doi:10.1016/j.dsr2.2008.10.023

    Google Scholar 

  • Clement Kinney J, Maslowski W, Aksenov Y, de Cuevas B, Jakacki J, Nguyen A, Osinski R, Steele M, Woodgate RA, Zhang J (2014) Chapter 7: On the flow through Bering strait: a synthesis of model results and observations. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 167–198

    Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, TeyssiĂ© JL, Gattuso JP (2009) Impact of ocean acidification on a key arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    CAS  Google Scholar 

  • Cooley S, Kite-Powell H, Doney S (2009) Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22(4):172–181

    Google Scholar 

  • Davidson K (1996) Modelling microbial foodwebs. Mar Ecol Prog Ser 145:279–296

    Google Scholar 

  • Deal C, Elliott S, Jin M, Hunke E, Maltrud M, Jeffery N (2011) Large scale modeling of primary production and ice algal biomass within arctic sea ice in 1992. J Geophys Res 116, C07004. doi:10.1029/2010JC006409

    Google Scholar 

  • Delille B, Jourdain B, Borges A, Tison JL, Delille D (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in spring antarctic fast ice. Limnol Oceanogr 52(4):1367–1379

    CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Denman K, Christian J, Steiner N, Pörtner HO, Nojiri Y (2011) Potential impacts of future ocean acidification on marine ecosystems and fisheries. ICES J Mar Sci. doi:10.1093/icesjms/fsr074

    Google Scholar 

  • Dieckmann GS, Hellmer HH (2003) The importance of sea ice: an overview. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell, Oxford, pp 10–13

    Google Scholar 

  • Dieckmann GS, Nehrke G, Uhlig C et al (2010) Brief communication : ikaite (CaCO3.6H2O) discovered in Arctic sea ice. Cryosphere 4:227–230

    Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120

    CAS  Google Scholar 

  • Doney S (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328(5985):1512–1516

    CAS  Google Scholar 

  • Doney S, Lindsay K, Fung I, John J (2006) Natural variability in a stable 1,000 year coupled climate-carbon cycle simulation. J Climate 19(13):3033–3054

    Google Scholar 

  • Doney SC, Lima I, Moore JK et al (2009) Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. J Mar Syst 76:95–112. doi:10.1016/j.jmarsys.2008.05.0

    Google Scholar 

  • Dupont S, Thorndyke M (2008) Ocean acidification and its impact on the early life-history stages of marine animals. In: Briand F (ed) Impact of acidification on biological, chemical and physical systems in the Mediterranean and Black Seas, vol 36, Monograph. CIESM, Monaco, pp 89–97

    Google Scholar 

  • Dupont S, Thorndyke M (2009) Impact of CO2-driven ocean acidification on invertebrates early life history – what we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131. doi:10.5194/bgd-6-3109-2009

    Google Scholar 

  • Elliott S (2009) Dependence of DMS global sea-air flux distribution on transfer velocity and concentration field type. J Geophys Res 114. doi:10.1029/2008JG000710

  • Elliott S, Reagan M, Moridis G, Smith P (2010) Geochemistry of clathrate-derived methane in Arctic Ocean waters. Geophys Res Lett. doi:10.1029/2010GL043369

    Google Scholar 

  • Elliott S, Deal J, Humphries G et al (2012) Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology. J Geophys Res 117, G01016. doi:10.1029/2011JG001649

    Google Scholar 

  • Fabry V, Seibel B, Feely R, Orr J (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65(3):414–432

    CAS  Google Scholar 

  • Fabry V, Mclintock J, Mathis J, Grebmeier J (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22(4):160–171

    Google Scholar 

  • Fennel W (2009) Parameterizations of truncated food web models from the perspective of an end-to-end model approach. J Mar Syst 76:171–185. doi:10.1016/j.jmarsys.2008.05.0

    Google Scholar 

  • Frey KE, Masalanik JA, Clement Kinney J, Maslowski W (2014) Chapter 3: Recent variability of sea ice cover, age, and thickness in the Pacific Arctic region. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 31–64

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353. doi:10.1175/JCLI3800.1

    Google Scholar 

  • Friedrichs M, Dusenberry J, Anderson L et al (2007) Assessment of skill and portability in regional marine biogeochemical models: the role of multiple planktonic groups. J Geophys Res 112:C08001. doi:10.1029/2006JC003852

    Google Scholar 

  • Friedrichs MA, Carr ME, Barber RT et al (2009) Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J Mar Syst 76:113133. doi:10.1016/j.jmarsys.2008.05.0

    Google Scholar 

  • Garneau M-E, Roy S, Lovejoy C et al (2008) Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic. J Geophys Res 113:C07S91

    Google Scholar 

  • Gattuso J-P, Hansson L (2011) Ocean acidification. Oxford University Press, New York

    Google Scholar 

  • Gaylord B, Hill TM, Sanford E et al (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. J Exp Biol 214(15):2586–2594. doi:10.1242/eb.055939

    CAS  Google Scholar 

  • Gentleman W (2002) A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems. Hydrobiologia 480:69–85

    Google Scholar 

  • Gibson GA, Spitz Y (2011) Impacts of biological parameterization, initial conditions and environmental forcing on parameter sensitivity and uncertainty in a marine ecosystem model for the Bering Sea. J Mar Syst 88:214–231

    Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241

    CAS  Google Scholar 

  • Golden KM, Eicken H, Heaton AL, Miner J, Pringle D, Zhu J (2007) Thermal evolution of permeability and microstructure in sea ice. Geophys Res Lett 34:L16,501. doi:10.1029/2007GL030447

  • Gosink TA, Pearson JG, Kelley JJ (1976) Gas movement through sea-ice. Nature 263:41–42

    CAS  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort seas during May/June 2002. Deep Sea Res II 44(8):1623–1644. doi:10.1016/j.dsr2.2008.10016

    Google Scholar 

  • Gradinger R, Meiners K, Plumley G, Zhang Q, Bluhm B (2005) Abundance and composition of the sea ice meiofauna in off-shore pack ice of the Beaufort Gyre in summer 2002 and 2003. Polar Biol 28:171–181

    Google Scholar 

  • Grebmeier JM, Dunton KH (2000) Benthic processes in the northern Bering/Chukchi seas: status and global change. In: Huntington HP (ed) Impacts of changes in sea-ice and other environmental parameters in the Arctic. Report of the Marine Mammal Commission workshop, Girdwood, 2000

    Google Scholar 

  • Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67

    Google Scholar 

  • Grebmeier JM, Overland J, Moore SE (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464

    CAS  Google Scholar 

  • Grebmeier JM, Moore SE, Overland JW, Frey KE, Gradinger R (2010) Biological response to recent Pacific Arctic sea ice retreats. EOS 91:161–168

    Google Scholar 

  • Hasumi H (2006) CCSR Ocean Component Model (COCO) version 4.0. Center for Climate System Research report, University of Tokyo

    Google Scholar 

  • Hemmings J, Srokosz M, Challenor P, Fasham M (2004) Split-domain calibration of an ecosystem model using satellite ocean colour data. J Mar Syst 50(3–4):141–179

    Google Scholar 

  • Hermann AJ, Stabeno PJ, Haidvogel DB (2002) A regional tidal/subtidal circulation model of the southeastern Bering Sea: development, sensitivity analyses and hindcasting. Deep Sea Res II 49:5495–5967

    Google Scholar 

  • Hinckley S, Coyle KO, Gibson G (2009) A biophysical NPZ model with iron for the Gulf of Alaska: reproducing the differences between an oceanic HNLC ecosystem and a classical northern temperate shelf ecosystem. Deep Sea Res II 56:2520–2536

    CAS  Google Scholar 

  • Holland M, Bitz C, Tremblay B (2006) Future abrupt reductions in the summer arctic sea ice. Geophys Res Lett 33(23):L23503. doi:10.1029/2006GL028024

    Google Scholar 

  • Holmes RM et al (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:L03402

    Google Scholar 

  • Hood R, Christian J (2008) Ocean nitrogen cycle modelling. In: Capone D (ed) Nitrogen in the marine environment, 2nd edn. Academic Press, San Diego CA

    Google Scholar 

  • Hu H, Wang J (2008) Modeling the ocean circulation in the Bering Sea. Chinese J Polar Sci 19:193–211

    Google Scholar 

  • Hu H, Wang J (2010) Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: process studies. J Geophys Res 115:C01006. doi:10.1029/2008JC005175

    Google Scholar 

  • Hunke EC, Bitz CM (2009) Age characteristics in multidecadal Arctic sea ice simulation. J Geophys Res 114:C08013. doi:10.1029/2008JC005186

    Google Scholar 

  • Hunke E, Lipscomb W (2008) CICE: the Los Alamos sea ice model documentation and software user’s manual (Version 4.0). Los Alamos National Laboratory, Los Alamos LA-CC-06-012 edn

    Google Scholar 

  • Jin M, Deal CJ, Wang J, Shin K-H, Tanaka N, Whitledge TE, Lee SH, Gradinger R (2006a) Controls of the land fast ice-ocean ecosystem offshore Barrow, Alaska. Ann Glaciol 44:63–72

    CAS  Google Scholar 

  • Jin M, Deal CJ, Wang J, Tanaka N, Ikeda M (2006b) Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea mid-shelf. J Geophys Res 111:C03002. doi:10.1029/2005JC002994

    Google Scholar 

  • Jin M, Deal CJ, Wang J et al (2007) Ice-associated phytoplankton blooms in the southeastern Bering Sea. Geophys Res Lett 34:L06612. doi:10.1029/2006GL028849

    Google Scholar 

  • Jin M, Deal CJ, Wang J et al (2009) Response of lower trophic level production to long-term climate change in the southeastern Bering Sea. J Geophys Res 114:C04010. doi:10.1029/2008JC005105

    Google Scholar 

  • Jin M, Deal CJ, Lee S et al (2012) Investigation of Arctic sea ice and ocean primary production for the period 1992 to 2007 using a 3-D global ice-ocean ecosystem model. Deep Sea Res II. doi:10.1016/j.dsr2.2011.06.003

    Google Scholar 

  • Jodwalis CM, Benner RL, Eslinger DL (2000) Modeling of dimethyl sulfide ocean mixing, biological production and sea-to-air flux for high latitudes. J Geophys Res 105:14387–14399

    CAS  Google Scholar 

  • Jolliff JK, Kindle JC, Shulman I, Penta B, Friedrichs MA, Helber R, Arnone RA (2009) Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J Mar Syst 76:64–82. doi:10.1016/j.jmarsys.2008.05.014

    Google Scholar 

  • Jones A, Roberts D, Woodage M, Johnson C (2001) Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J Geophys Res 106:20293–20310

    Google Scholar 

  • Kadko D, Pickart RS, Mathis J (2008) Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. J Geophys Res 113:C02018. doi:10.1029/2007JC0044292241

    Google Scholar 

  • Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    CAS  Google Scholar 

  • Kelley J, Gosink T (1979) Gases in sea ice: 1975–1979. Technical report. Office of Naval Research, Arlington, 104 pp

    Google Scholar 

  • Kishi MJM et al (2007) NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecol Model 202:12–25

    Google Scholar 

  • Krembs C, Eicken H, Junge K et al (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181

    CAS  Google Scholar 

  • Lavoie D, Denman K, Michel C (2005) Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (resolute passage, Canadian archipelago). J Geophys Res 110:C11009. doi:10.1029/2005JC002922

    Google Scholar 

  • Lavoie D, Macdonald RW, Denman KL (2009) Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. J Mar Syst 75:17–32

    Google Scholar 

  • Lavoie D, Denman KL, Macdonald RW (2010) Effects of future climate change on primary productivity and export fluxes in the Beaufort Sea. J Geophys Res 115:C04018. doi:10.1029/2009JC005493

    Google Scholar 

  • Le Clainche Y, Vezina A, Levasseur M et al (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochem Cycles 24:GB3021. doi:10.1029/2009GB003721

    Google Scholar 

  • Leck C, Bigg E (2005a) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus 57B(4):305–316. doi:10.1111/j.1600-0889.2005.00148.x

    Google Scholar 

  • Leck C, Bigg E (2005b) Source and evolution of the marine aerosol – a new perspective. Geophys Res Lett 32:L19803. doi:10.1029/2005GL023651

    Google Scholar 

  • Leck C, Bigg E (2008) Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus 60B(1):118–126. doi:10.1111/j.1600-0889.2007.00315.x

    CAS  Google Scholar 

  • Lee S, Whitledge TE, Kang S (2007) Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res 27:2231–2249

    Google Scholar 

  • Lee S, Jin M, Whitledge TE (2010) Comparison of bottom sea-ice algal characteristics from coastal and offshore regions in the Arctic Ocean. Polar Biol. doi:10.1007/s00300-010-0820-1

    Google Scholar 

  • Liang X-Z, Kunkel KE, Meehl GA (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35:L08709

    Google Scholar 

  • Llinas L, Pickart RS, Mathis JT, Smith SL (2009) Zooplankton inside an Arctic Ocean cold-core eddy: probable origin and fate. Deep Sea Res II 56:1290–1304

    Google Scholar 

  • Loose B, Miller LA, Elliott S, Papakyriakou T (2011) Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 24(3):202–218

    Google Scholar 

  • Lynch DR, McGillicuddy DJ Jr, Werner FE (2009) Skill assessment for coupled biological/physical models of marine systems. J Mar Syst 76:1–3. doi:10.1016/j.jmarsys.2008.05.002

    CAS  Google Scholar 

  • Macdonald R, Anderson LG, Christensen JP, Miller LA, Semiletov IP, Stein R (2009) The Arctic Ocean: budgets and fluxes. In: Liu K-K, Atkinson L, Quinones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, Berlin

    Google Scholar 

  • Manley TO, Hunkins K (1985) Mesoscale eddies of the Arctic Ocean. J Geophys Res 90:4911–4930

    Google Scholar 

  • Maslowski W, Clement Kinney J, Marble D (2008) Towards eddy-resolving models of the Arctic Ocean. In: Hecht MW, Hasumi H (eds) Ocean modeling in an eddying regime, vol 177, Geophysical monograph series, Washington DC

    Google Scholar 

  • Maslowski W, Clement Kinney J, Higgins M, Roberts A (2012) The future of Arctic sea ice. Annu Rev Earth Planet Sc 40:625–654

    CAS  Google Scholar 

  • Matear R, Holloway G (1995) Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus. Global Biogeochem Cycles 9:101–119

    CAS  Google Scholar 

  • Mathis JT, Pickart RS, Hansell DA (2007) Eddy transport of organic carbon and nutrients from the Chukchi shelf: impact of the upper halocline of the western Arctic Ocean. J Geophys Res 112:C05011. doi:10.1029/2006JC003899

    Google Scholar 

  • Mathis J, Cross J, Bates N, Moran SB, Lomas M, Mordy C, Stabeno P (2010) Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf. Biogeosciences 7:1769–1787. doi:10.5194/bg-7-1769-2010

    CAS  Google Scholar 

  • Mathis JT, Grebmeier JM, Hansell DA, Hopcroft RR, Kirchman DL, Lee SH, Moran SB, Bates NR, VanLaningham S, Cross JN, Cai W-J (2014) Chapter 9: Carbon biogeochemistry of the Western Arctic: primary production, carbon export and the controls on ocean acidification. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 223–268

    Google Scholar 

  • Matrai P, Tranvik L, Leck C, Knulst J (2008) Are high arctic surface microlayers a potential source of aerosol organic precursors? Mar Chem 108:109–122

    CAS  Google Scholar 

  • Megry BA, Hinckley S (2001) The effect of turbulence on feeding of larval fishes: a sensitivity analysis using an individual-based model. ICES J Mar Sci 58:1015–1029

    Google Scholar 

  • Melling H, Moore RM (1995) Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients. Cont Shelf Res 15:89–113

    Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M et al (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    CAS  Google Scholar 

  • Miller L, Papakyriakou TN, Collins RE, Deming JW, Ehn JK, Macdonald RW, Mucci A, Owens O, Raudsepp M, Sutherland N (2011) Carbon dynamics in sea ice: a winter flux time series. J Geophys Res 116:C02028. doi:10.1029/2009JC006058

    Google Scholar 

  • Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 18:GB4028. doi:10.1029/2004GB002220

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

  • Munday P, Dixson D, Cormick M, Meekan M, Ferrari M, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1004519107

    Google Scholar 

  • Mundy CJ, Barber DG, Michel C (2005) Variability of snow and ice thermal, physical and optical properties pertinent to sea ice algae biomass during spring. J Mar Syst 58:107–120

    Google Scholar 

  • Nakicenovic G, Alcamo J, Davis G, de Vries J Fenhann B, Gaffin S et al (2000) IPCC special report on emissions scenarios. Technical report. Cambridge University Press, United Kingdom/New York

    Google Scholar 

  • Nelson RJ, Ashjian C, Bluhm B, Conlan K, Gradinger R, Grebmeier J, Hill V, Hopcroft R, Hunt B, Joo H, Kirchman D, Kosobokova K, Lee S, Li WKW, Lovejoy C, Poulin M, Sherr E, Young K (2014) Chapter 10: Biodiversity and biogeography of the lower trophic taxa of the Pacific Arctic region: sensitivities to climate change. In: Grebmeier JM, Maslowski W (eds) The Pacific Arctic region: ecosystem status and trends in a rapidly changing environment. Springer, Dordrecht, pp 269–336

    Google Scholar 

  • Nihoul JC, Adam P, Brasseur P et al (1993) Three-dimensional general circulation model of the northern Bering Sea’s summer ecohydrodynamics. Cont Shelf Res 13:509–542

    Google Scholar 

  • Norberg J (2004) Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol Oceanogr 49:1269–1277

    Google Scholar 

  • Notz D, Worster MG (2009) Desalination processes of sea ice revisited. J Geophys Res 114:C05006. doi:10.1029/2008JC004885

    Google Scholar 

  • Okkonen SR, Weingartner TJ, Danielson SL et al (2003) Satellite and hydrographic observations of eddy-induced shelf-slope exchange in the northwestern Gulf of Alaska. J Geophys Res 108:C23033. doi:10.1029/2002JC001342

    Google Scholar 

  • Orr J, Fabry V, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:681–686

    CAS  Google Scholar 

  • Overland JE, Roach AT (1987) Northward flow in the Bering and Chukchi seas. J Geophys Res 92:7097–7105

    Google Scholar 

  • Pabi S, van Dijken G, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998–2006. J Geophys Res 113:C08005. doi:10.1029/2007JC004578

    Google Scholar 

  • Pahlow M, Vezina AF, Casault B, Maass H, Malloch L, Wright DG, Lu Y (2008) Adaptive model of plankton dynamics for the North Atlantic. Prog Oceanogr 76:151–191

    Google Scholar 

  • Petrich C, Eicken H (2009) Growth, structure and properties of sea ice. In: Thomas DN and Dieckmann GS (eds) Sea ice. Wiley-Blackwell, Iowa, pp 23–77

    Google Scholar 

  • Pogson L, Tremblay B, Lavoie D, Michel C, Vancoppenolle M (2011) Development and validation of a one-dimensional snow-ice algae model against observations in resolute passage, Canadian Arctic archipelago. J Geophys Res 116:C04010. doi:10.1029/2010JC006119

    Google Scholar 

  • Popova EE, Yool A, Coward AC et al (2010) Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model. Biogeosciences 7:3569–3591. doi:10.5194/bg-7-3569-2010

    CAS  Google Scholar 

  • Popova EE, Yool A, Coward AC et al (2012) What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J Geophys Res 117:C00D12. doi:10.1029/2011JC007112

    Google Scholar 

  • Pörtner H (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 216(6):881–893

    Google Scholar 

  • Pörtner H, Farrell A (2008) Physiology and climate change. Science 322:690–692

    Google Scholar 

  • Prather M, Ehhalt D, Dentener F et al (2001) Atmospheric chemistry and greenhouse gases. In: Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, England, pp 239–287

    Google Scholar 

  • Reagan M, Moridis G (2008) Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res 113. doi:10.1029/2008JC004938

  • Reeburgh W (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    CAS  Google Scholar 

  • Rhee T, Kettle AJ, Andreae MO (2009) Methane and nitrous oxide emissions from the ocean: a reassessment using basin-wide observations in the Atlantic. J Geophys Res 114:D12304. doi:10.1029/2008JD011662

    Google Scholar 

  • Rho T, Whitledge TE (2007) Characteristics of seasonal and spatial variability of primary production over the southeastern Bering Sea shelf. Cont Shelf Res 27:2556–2569

    Google Scholar 

  • Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT, Tortell P, Young JR (2009) From laboratory manipulations to earth system models: scaling calcification impacts of ocean acidification. Biogeosciences 6:2611–2623

    CAS  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell P, Zeebe R, Morel F (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M et al (2008) Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J Mar Syst 74:918–932

    Google Scholar 

  • Roberts A, Cassano J, Döscher R et al (2010) A science plan for regional Arctic system modeling, a report to the national science foundation from the international Arctic science community, international Arctic research center technical papers 10–0001, International Arctic Research Center, University of Alaska Fairbanks, 47 p

    Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic Sea ice cover. Geophys Res Lett 26:3469–3472

    Google Scholar 

  • Rothrock DA, Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi:10.1029/2007JC004252

    Google Scholar 

  • Rysgaard S, Glud R, Sejr M et al (2007) Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J Geophys Res 112:C03016. doi:10.1029/2006JC003572

    Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, MacDonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–81

    Google Scholar 

  • Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher TL, Cadule P, Friedlingstein P, Doney SC, Behrenfeld MJ, Joos F (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeoscience 5:597–614

    CAS  Google Scholar 

  • Semiletov I, Makshtas A, Akasofu SI, Andreas E (2004) Atmospheric CO2 balance: the role of arctic sea ice. Geophys Res Lett 31(5):L05,121. doi:10.1029/2003GL017996

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ă” (2010) Extensive methane venting to the atmosphere from sediments of the east Siberian Arctic shelf. Science 237:1246–1250

    Google Scholar 

  • Shaw GE (1983) Bio-controlled thermostasis involving the sulfur cycle. Clim Change 5(297):297–303. doi:10.1007/BF02423524

  • Six KD, Maier-Reimer E (2006) What controls the oceanic dimethylsulfide (DMS) cycle. Global Biogeochem Cycles 20. doi:10.1029/2005GB002674

  • Slagstad D, Wassmann P (1997) Climatic change and carbon flux in the Barents Sea: 3-D simulations of ice-distribution, primary production and vertical export of particulate organic carbon. Mem Natl Inst Polar Res 51(Special Issue):119–141

    Google Scholar 

  • Slagstad D, Ellingsen IH, Wassmann P (2011) Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Prog Oceanogr 90:117–131

    Google Scholar 

  • Smith KW, McGillicuddy DJ, Lynch DR (2009) Parameter estimation using an ensemble smoother: the effect of the circulation in biological estimation. J Mar Syst 76:162–170

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z et al (eds) (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press

    Google Scholar 

  • Spaulding M, Isaji T, Mendelsohn D et al (1987) Numerical simulation of wind-driven flow through the Bering Strait. J Phys Oceanogr 17:1799–1816

    Google Scholar 

  • Springer AM, McRoy CP (1993) The paradox of pelagic food webs in the northern Bering Sea. III. Patterns of primary production. Cont Shelf Res 13:575–599

    Google Scholar 

  • Stabeno PJ, Schumacher JD, Ohtani K (1999) The physical oceanography of the Bering Sea. In: Loughlin TR, Ohtani K (eds) Dynamics of the Bering Sea. University of Alaska Sea Grant, Fairbanks, pp 1–28

    Google Scholar 

  • Steinacher M, Joos F, Frölicher T, Plattner GK, Doney S (2009) Imminent ocean acidification of the arctic projected with the NCAR global coupled carbon-cycle climate model. Biogeosciences 6(4):515–533

    CAS  Google Scholar 

  • Steinacher M, Joos F, Frölicher T et al (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    CAS  Google Scholar 

  • Stow CA, Jolliff J, McGillicuddy DJ, Doney SC, Allen JI, Friedrichs MA, Rose KA, Wallhead P (2009) Skill assessment for coupled biological/physical models of marine systems. J Mar Syst 76:4–15. doi:10.1016/j.jmarsys.2008.05.006

    Google Scholar 

  • Stroeve J, Holland MM, Meier W et al (2008) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Google Scholar 

  • Stroeve J, Serreze M, Holland M, Kay J, Maslanik J, Barrett A (2011) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change. doi:10.1007/s10584-011-0101-1

    Google Scholar 

  • Sumaila R, Cheung W (2010) Cost of adapting fisheries to climate change. The World Bank discussion paper 5(8):1496–1501

    Google Scholar 

  • Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  • Tett P (1987) Modelling the growth and distribution of marine microplankton. In: Fletcher M, Joe J, Gray T (eds) Ecology of microbial communities. Cambridge University Press, Cambridge

    Google Scholar 

  • Tremblay J-E, Gagnon G (2009) The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In: Nihoul JCJ, Kostianoy AG (eds) Influence of climate change on the changing Arctic and sub-Arctic conditions. Proceedings of the NATO advanced research workshop, Liège, May 2008. Springer, Dordrecht, pp 73–94

    Google Scholar 

  • Tremblay J-E et al (2008) Vertical stability and annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J Geophys Res 113:C07S90. doi:10.1029/2007JC004547

    Google Scholar 

  • Vancoppenolle M, Fichefet T, Goosse H (2009) Simulating the mass balance and salinity of arctic and antarctic sea ice. 2. Importance of sea ice salinity variations. Ocean Model 27:54–69

    Google Scholar 

  • Vancoppenolle M, Goosse H, de Montety A, Fichefet T, Tremblay B, Tison JL (2010) Modeling brine and nutrient dynamics in antarctic sea ice: the case of dissolved silica. J Geophys Res 115:C02005. doi:10.1029/2009JC005369

    Google Scholar 

  • Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64:89–109

    Google Scholar 

  • Wallhead PJ, Martin AP, Srokosz MA, Franks PJ (2009) Skill assessment via cross-validation and Monte Carlo simulation: an application to Georges bank plankton models. J Mar Syst 76:134–150. doi:10.1016/j.jmarsys.2008.05.0

    Google Scholar 

  • Walsh JJ, Dieterle DA, Maslowski W et al (2004) Decadal shifts in biophysical forcing of Arctic marine food webs: numerical consequences. J Geophys Res 109:C05031

    Google Scholar 

  • Walsh JJ, Dieterle DA, Maslowski W et al (2005) A numerical model of seasonal primary production within the Chukchi/Beaufort seas. Deep Sea Res II 52:3541–3576. doi:10.1016/j.dsr2.2005.09.009

    Google Scholar 

  • Wang J, Deal C, Wan Z, Jin M, Tanaka N. Ikeda M (2003) User’s guide for a physical ecosystem model in the subpolar and polar oceans. IARC FRSGC technical report 03–01. 75 pp

    Google Scholar 

  • Wang J, Hu H, Mizobata K, Saitoh S (2009) Seasonal variations of sea ice and ocean circulation in the Bering Sea: a model-data fusion study. J Geophys Res 114:C02011. doi:10.1029/2008JC004727

    Google Scholar 

  • Wassmann P, Slagstad D, Riser CW, Reigstad M (2006) Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone II. Carbon flux and interannual variability. J Mar Syst 59:1–24

    Google Scholar 

  • Wassmann P, Duarte CM, Agusti S et al (2011) Footprints of climate change in the Arctic marine ecosystem. Global Change Biol 17:1235–1249. doi:10.1111/j.1365-2486.2010.02311

    Google Scholar 

  • Watanabe E (2011) Beaufort shelfbreak eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and modeling analyses. J Geophys Res 116:C08034. doi:10.1029/2010JC006259

    Google Scholar 

  • Watanabe E, Hasumi H (2009) Pacific water transport in the western Arctic Ocean simulated by an eddy-resolving coupled sea ice-ocean model. J Phys Oceanogr 39:2194–2211

    Google Scholar 

  • Werner I, Ikävalko J, SchĂĽnemann H (2007) Sea-ice algae in Arctic pack ice during late winter. Polar Biol 30:1493–1504

    Google Scholar 

  • Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32:L02602. doi:10.1029/2004GL021747

    Google Scholar 

  • Yamamoto-Kawai M, McLaughlin F, Carmack E, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326(5956):1098–1100

    CAS  Google Scholar 

  • Yamamoto-Kawai M, McLaughlin F, Carmack E (2011) Effects of ocean acidification, warming and melting of sea ice on aragonite saturation of the Canada Basin surface water. Geophys Res Lett 38:L03601. doi:10.1029/2010GL045501

    Google Scholar 

  • Yool A, Oschlies A, Nurser AJG, Gruber N (2010) A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean. Biogeosciences 7:723–751. doi:10.5194/bg-7-723-2010

    CAS  Google Scholar 

  • Zahariev K, Christian J, Denman K (2008) A global ocean carbon model with parameterizations of iron limitation, calcification and N2 fixation: preindustrial, historical and fertilization simulations. Prog Oceanogr 77(1):56–82

    Google Scholar 

  • Zemmelink H, Houghton L, Dacey J et al (2008) Stratification and the distribution of phytoplankton, nutrients, inorganic carbon, and sulfur in the surface waters of Weddell Sea leads. Deep Sea Res II 55:988–999

    Google Scholar 

  • Zhang J, Spitz Y, Steele M et al (2010) Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J Geophys Res 115:C10015. doi:10.1029/209JC005387

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their helpful comments and Dr. Candace O’Connor for editorial assistance. The National Science Foundation (NSF) provided funds for meetings as part of the International Collaboration to Achieve Circumpolar Synthesis and Integration Project (ARC-0653838). NOAA provided travel support to C. Deal through the University Corporation for Atmosphere Research. The departments of Fisheries and Oceans and Environment Canada supported the contributions of N. Steiner, J. Christian, K. Denman, D. Lavoie, and W. Lee. The IARC/JAMSTEC Cooperative Agreement and NSF ARC-0652838 supported contributions by C. Deal and M. Jin. Funding support for contributions by J. Clement Kinney and W. Maslowski was provided by multiple grants from the Climate Change Prediction Program of the Department of Energy, the Arctic System Science (ARCSS) Program of the NSF, and the Office of Naval Research. Funding support for contributions by G. Gibson was provided by a grant from NSF (ARC-0732538). Funding support for S.H. Lee was provided by the MOF, Korea (K-PORT, PM12020). J. Wang was supported by the NOAA CPO Office of Arctic Research on ice-ocean-ecosystem modeling under the RUSALCA and PAG projects. This is GLERL Contribution No. 1704. E. Watanabe was funded by the IARC/JAXA Contract JFY2008-2010 and the Grants-in-Aid for Scientific Research (S) of Japan Society for the Promotion of Science (JSPS), No. 22221003

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara J. Deal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deal, C.J. et al. (2014). Progress and Challenges in Biogeochemical Modeling of the Pacific Arctic Region. In: Grebmeier, J., Maslowski, W. (eds) The Pacific Arctic Region. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8863-2_12

Download citation

Publish with us

Policies and ethics